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The opinions, findings, and conclusions expressed in this publication are those of the 
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SI (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS 

 
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL 

LENGTH 

in inches 25.4 millimeters mm 

ft feet 0.305 meters m 

yd yards 0.914 meters m 

mi miles 1.61 kilometers km 

AREA 

in2 square inches 645.2 square millimeters mm2 

ft2 square feet 0.093 square meters m2 

yd2 square yard 0.836 square meters m2 

ac acres 0.405 hectares ha 

mi2 square miles 2.59 square kilometers km2 

VOLUME 

fl oz fluid ounces 29.57 milliliters mL 

gal gallons 3.785 liters L 

ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3 

MASS 

oz ounces 28.35 grams g 

lb pounds 0.454 kilograms kg 

T short tons (2,000 lb) 0.907 Megagrams Mg (or "t") 

TEMPERATURE (exact degrees) 

oF Fahrenheit 5(F-32)/9 or (F-32)/1.8 Celsius oC 

FORCE and PRESSURE or STRESS 

kip 1,000 pound force 4.45 kilonewtons kN 

lbf pound force 4.45 newtons N 

lbf/in2 pound force per square inch 6.89 kilopascals kPa 

ksi kips force per square inch 6.89 Megapascals MPa 
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EXECUTIVE SUMMARY 
 
During the process of constructing a highway bridge, there are several construction stages 

that warrant consideration from a structural safety and design perspective. The first objective of 
the present study was to use analytical models of prestressed concrete girders (Florida-I Beams) 
at multiple stages of construction to update previously developed capacity equations for wind 
load and gravity load. Updated analytical bridge models were developed that accounted for a 
revised definition of lateral girder sweep—one that accounted for both maximum allowable 
fabrication tolerance as well as transverse thermal gradients (i.e., thermally induced sweep). 
Subsequently, analytical parametric studies were conducted to update—using the revised 
definition of sweep—previously developed girder capacity equations. The updated capacity 
equations take into consideration different Florida-I Beam cross-sections, span lengths, wind 
loads, skew angles, and brace stiffnesses. 

A second objective in this study was to use finite element analyses of partially 
constructed bridge systems—consisting of multiple Florida-I Beam (FIBs) with construction 
loads—to quantify distribution factors for interior and exterior girder end shear forces and 
maximum girder moments. A large-scale parametric study was conducted with consideration of 
different Florida-I Beam cross-sections, span lengths, girder spacing, deck overhang widths, 
skew angles, number of girders, number of braces, and bracing configurations (K-brace and X-
brace) to quantify shear and moment distribution factor data. These data were subsequently used 
to develop empirical construction stage distribution factor (DF) equations at multiple levels of 
design conservatism.  

 
 

 



 

vii 

TABLE OF CONTENTS 

DISCLAIMER ................................................................................................................................ ii 

SI (MODERN METRIC) CONVERSION FACTORS ................................................................. iii 

TECHNICAL REPORT DOCUMENTATION PAGE ................................................................. iv 

ACKNOWLEDGEMENTS .............................................................................................................v 

EXECUTIVE SUMMARY ........................................................................................................... vi 

LIST OF FIGURES .........................................................................................................................x 

LIST OF TABLES ....................................................................................................................... xvi 

CHAPTER 1 INTRODUCTION .....................................................................................................1 

1.1 Background .........................................................................................................................1 
1.2 Objectives ...........................................................................................................................2 
1.3 Scope of work .....................................................................................................................2 

CHAPTER 2 PHYSICAL DESCRIPTION OF BRIDGES DURING CONSTRUCTION ............4 

2.1 Introduction .........................................................................................................................4 
2.2 Geometric parameters .........................................................................................................4 
2.3 Bearing pads .......................................................................................................................6 
2.4 Bracing ................................................................................................................................6 

CHAPTER 3 GIRDER SWEEP INCLUDING THERMAL GRADIENT EFFECTS ....................8 

3.1 Introduction .........................................................................................................................8 
3.2 Literature review: thermal sweep .......................................................................................8 
3.3 Thermal sweep for Florida-I Beams .................................................................................12 

CHAPTER 4 DEVELOPMENT OF UNANCHORED SINGLE-GIRDER WIND  
CAPACITY EQUATION .......................................................................................................15 

4.1 Introduction .......................................................................................................................15 
4.2 Modeling of bridge girders ...............................................................................................15 

4.2.1 Modeling of end supports .......................................................................................17 
4.2.2 Bearing pad selection .............................................................................................17 
4.2.3 Axial load selection ................................................................................................18 
4.2.4 Girder slope selection .............................................................................................19 
4.2.5 Load application to individual bridge girders ........................................................19 

4.3 Parametric study of unanchored individual bridge girders ...............................................20 
4.3.1 Selection of parameters ..........................................................................................20 
4.3.2 Updated wind capacity of a single unanchored girder ...........................................21 



 

viii 

CHAPTER 5 DEVELOPMENT OF UNANCHORED STRUT-BRACED TWO-GIRDER 
BUCKLING CAPACITY EQUATION .................................................................................24 

5.1 Introduction .......................................................................................................................24 
5.2 Review of multi-girder system-related information from BDK75-977-33 ......................24 

5.2.1 Preliminary sensitivity studies ................................................................................24 
5.2.2 Strut braces .............................................................................................................24 
5.2.3 Moment-resisting braces ........................................................................................25 
5.2.4 Modeling of braces .................................................................................................26 
5.2.5 Modeling of bridge skew and wind load ................................................................28 

5.3 Parametric study of system capacity of unanchored two-girder system in zero wind ......30 
5.3.1 Parameters ..............................................................................................................30 
5.3.2 Updated system capacity of unanchored two-girder system in zero wind .............30 

5.4 Moment-resisting brace: limited scope parametric study .................................................32 
5.4.1 Selection of parameters for limited scope moment-resisting brace parametric 

study .............................................................................................................................34 
5.4.2 Updated system capacity of moment-resisting brace .............................................36 

CHAPTER 6 PROCEDURES DEVELOPMENT FOR CONSTRUCTION LOAD 
DISTRIBUTION FACTOR EQUATIONS ............................................................................40 

6.1 Introduction .......................................................................................................................40 
6.2 Modeling multi-girder bridge systems during construction .............................................43 
6.3 Application of construction loads .....................................................................................46 

6.3.1 Construction load groups considered .....................................................................47 
6.3.2 Application of construction loads ...........................................................................51 

CHAPTER 7 DEVELOPMENT OF CONSTRUCTION LOAD  DISTRIBUTION FACTOR 
EQUATIONS .........................................................................................................................53 

7.1 Construction load distribution factor parametric study ....................................................53 
7.1.1 Scope ......................................................................................................................53 
7.1.2 Special cases ...........................................................................................................54 

7.2 Definition of distribution factors ......................................................................................54 
7.2.1 Distribution factor sensitivities ...............................................................................56 
7.2.2 Illustrative examples ...............................................................................................56 
7.2.3 Selection of culled data ..........................................................................................57 
7.2.4 Key parameters exhibiting sensitivity ....................................................................58 

7.3 Formation of baseline empirical distribution factor equations .........................................58 
7.4 Modifications to achieve desired level of prediction error ...............................................59 
7.5 Final distribution factor equations for design ...................................................................63 

7.5.1 Application of proposed method ............................................................................64 
7.5.2 Prediction error for full (unculled) parametric data set ..........................................64 
7.5.3 Proposed method compared to traditional tributary area method 

for Load Group 2 .........................................................................................................65 
 



 

ix 

CHAPTER 8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS ..........................68 

8.1 Summary and Conclusions ...............................................................................................68 
8.2 Recommendations .............................................................................................................68 

REFERENCES ..............................................................................................................................71 

APPENDIX A CROSS-SECTIONAL PROPERTIES OF FLORIDA-I BEAMS ........................73 

APPENDIX B EXAMPLE CALCULATIONS: 78” FIB THERMAL SWEEP ...........................75 

APPENDIX C EXAMPLE CALCULATIONS: TEMPORARY BRACING ASSESSMENT 
FOR AN FIB BRIDGE ...........................................................................................................84 

APPENDIX D DETAILED ILLUSTRATIONS: QUANTIFYING EXTERIOR AND 
INTERIOR GIRDER END SHEAR FORCES AND MAXIMUM MOMENTS WITH 
CONSTRUCTION LOADS APPLIED ..................................................................................90 

APPENDIX E EXAMPLE CALCULATIONS: QUANTIFYING EXTERIOR AND 
INTERIOR GIRDER END SHEAR FORCES AND MAXIMUM MOMENTS WITH 
CONSTRUCTION LOADS APPLIED ..................................................................................99 

APPENDIX F DETAILED ILLUSTRATIONS: DISTRIBUTION FACTORS FOR CASES 
WITH INTERIOR BRACING .............................................................................................110 



 

x 

LIST OF FIGURES 
Figure Page 
 
Figure 1.1 Prestressed concrete girders braced together for stability ..............................................1 

Figure 1.2 Bridge construction loads ...............................................................................................2 

Figure 2.1 Girder system..................................................................................................................4 

Figure 2.2 Definition of grade (elevation view) ..............................................................................4 

Figure 2.3 Definition of cross-slope (section view) .........................................................................5 

Figure 2.4 Definition of skew (plan view) .......................................................................................5 

Figure 2.5 Definition of camber (elevation view) ...........................................................................5 

Figure 2.6 Definition of sweep (plan view) .....................................................................................6 

Figure 2.7 Girder system with quarter-point bracing.......................................................................6 

Figure 2.8 Perpendicular brace placement on skewed bridge (plan view) ......................................7 

Figure 2.9 Common brace types: (a) X-brace; (b) K-brace .............................................................7 

Figure 3.1 Transverse thermal gradients of prestressed concrete bridge girders                            
proposed by Lee (2012): (a) Top flange; (b) Web; (c) Bottom flange ................................9 

Figure 3.2 Top flange transverse thermal gradient:                                                                                             
(a) From finite element analysis of a typical BT-63 girder (Lee, 2010);                                                        
(b) Simplified gradient proposed by Lee (2012);                                                                                          
(c) Approximated right side ascending branch (BDV31-977-46) .....................................11 

Figure 3.3 Transverse thermal gradients for FIB bridge girders:  (a) Top flange; (b) Web; 
(c) Bottom flange ...............................................................................................................12 

Figure 3.4 Comparison of sweep ratios computed for BT-63 girder (at varying span lengths) 
as computed using different methods ................................................................................12 

Figure 3.5 Thermal sweep data for FIB sections ...........................................................................13 

Figure 3.6 Thermal sweep ratios for FIB sections .........................................................................14 

Figure 4.1 Finite element model of a single FIB (isometric view) ................................................15 

Figure 4.2 Representation of sweep in FIB model (plan view) .....................................................16 

Figure 4.3 Representation of camber in FIB model (elevation view) ............................................17 



 

xi 

Figure 4.4 Bearing pad stiffness springs in FIB model (isometric view) ......................................18 

Figure 4.5 Representation of wind load in structural models: (a) Lateral nodal 
loads (top view); (b) Overturning moments (section view) ...............................................19 

Figure 4.6 Wind capacities for unanchored FIBs: (a) Data from BDK75-977-33 (without 
inclusion of thermal sweep);  (b) Data from present study (with inclusion of thermal 
sweep) ................................................................................................................................22 

Figure 4.7 Wind capacity of an unanchored FIB: (a) Data from Figure 4.6a and Eqn. (4.4) 
[i.e., Eqn. (8.2) from BDK75-977-33]; (b) Data from Figure 4.6b and Eqn. (4.5) 
developed in present study .................................................................................................23 

Figure 5.1 Examples of strut bracing: (a) Top strut; (b) Parallel struts .........................................25 

Figure 5.2 Collapse mechanism possible with strut bracing: (a) Undeformed configuration; 
(b) Collapse mechanism .....................................................................................................25 

Figure 5.3 Examples of moment-resisting braces: (a) X-brace; (b) K-brace .................................26 

Figure 5.4 Representation of brace configurations in FIB system models: (a) Top strut brace; 
(b) Parallel strut brace; (c) X-brace; (d) K-brace ...............................................................27 

Figure 5.5 Proposed wind load shielding model for stability evaluation from BDK75-977-33 ....28 

Figure 5.6 Effect of bridge skew on wind loading of braced 3-girder system (plan view): 
(a) Unskewed system; (b) Skewed system.........................................................................29 

Figure 5.7 System capacities of unanchored two-girder strut-braced FIB systems in zero 
wind: (a) Data from BDK75-977-33 (without inclusion of thermal sweep);  (b) Data 
from present study (with inclusion of thermal sweep) .......................................................31 

Figure 5.8 System capacity of an unanchored strut-braced two-girder FIB system in zero 
wind as predicted by C0 Equation: (a) Data from Figure 5.7a and Eqn. (9.2) from 

BDK75-977-33; (b) Data from Figure 5.7b and Eqn. (5.3) developed in present study ...32 

Figure 5.9 System capacity of moment-resisting two-girder FIB system: (a) Partial data from 
BDK75-977-33 and predicted capacity from Eqn. (9.23) from BDK75-977-33; 
(b) Updated FEA data developed in present study, and predicted capacity from 
Eqn. (5.3) (present study) and Eqn. (5.4) ...........................................................................37 

Figure 5.10 Absolute error of system capacity quantities predicted  by Eqn. (5.4)  from 
BDK75-977-33 with updated C0 equation [Eqn. (5.3)] (Note: negative absolute error 

indicates conservative prediction of capacity) ...................................................................38 

Figure 5.11 Comparison of predicted capacities............................................................................38 



 

xii 

Figure 5.12 Comparison of selected parametric study data from BDK75-977-33 with  
updated parametric study data (thermal sweep included) ..................................................39 

Figure 5.13 Absolute difference of current to previous parametric study system capacity 
quantities (Note: positive absolute difference indicates increased system capacity  
from previous study) ..........................................................................................................39 

Figure 6.1 Stay-in-place formwork (section view) ........................................................................40 

Figure 6.2 Temporary support brackets used to support deck overhangs during construction .....41 

Figure 6.3 Cantilever overhang supported by overhang brackets (Photo credit: Clifton and 
Bayrak, 2008) .....................................................................................................................41 

Figure 6.4 Details of overhang formwork support brackets and loads ..........................................42 

Figure 6.5 Typical bridge deck finishing machine in operation  (Photo credit: Gomaco) ............43 

Figure 6.6 Overhang bracket components and geometry ..............................................................44 

Figure 6.7 Details of overhang bracket model ...............................................................................45 

Figure 6.8 Cross-sectional view of overall braced girder system model .......................................45 

Figure 6.9 Isometric view of braced girder system model.............................................................46 

Figure 6.10 Cross-sectional summary of construction Load Group 1 (LG1) loads .......................48 

Figure 6.11 Construction Load Group 1 as a function of finishing machine location (Bridge 
with only end-span braces; no interior braces) ..................................................................48 

Figure 6.12 Construction Load Group 1 as a function of finishing machine location (Bridge 
with end-span and midspan bracing) .................................................................................49 

Figure 6.13 Construction Load Group 1 as a function of finishing machine location (Bridges 
with third-point bracing) ....................................................................................................49 

Figure 6.14 Construction Load Group 1 as a function of finishing machine location (Bridges 
with quarter-point bracing) ................................................................................................49 

Figure 6.15 Cross-sectional summary of construction Load Group 2 (LG2) loads .......................50 

Figure 6.16 Construction Load Group 2 with incremental deck load (Bridge with only end-
span braces; no interior braces) ..........................................................................................50 

Figure 6.17 Construction Load Group 2 with incremental deck load (Bridge with end-span 
and midspan bracing) .........................................................................................................50 



 

xiii 

Figure 6.18 Construction Load Group 2 with incremental deck load (Bridges with third-
point bracing) .....................................................................................................................51 

Figure 6.19 Construction Load Group 2 with incremental deck load (Bridges with quarter-
point bracing) .....................................................................................................................51 

Figure 6.20 Eccentric reaction forces from loads applied to SIP forms, and statically 
equivalent nodal force and moment applied to top of girder .............................................52 

Figure 6.21 All construction loads (LG1 and LG2) converted to equivalent nodal loads .............52 

Figure 7.1 DF sensitivity to number of girders .............................................................................56 

Figure 7.2 DF sensitivity to girder depth .......................................................................................57 

Figure 7.3 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction 
with a static beam analysis, without introduction of β (Note: an exceedance of 57% 
indicates a moderate level of implicit conservatism relative to the ‘zero mean error’ 
condition, i.e., 50% exceedance) .......................................................................................60 

Figure 7.4 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction 
with a static beam analysis, shifted with β to a 50% exceedance level .............................61 

Figure 7.5 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction 
with a static beam analysis, shifted with β to an 84% exceedance level ...........................61 

Figure 7.6 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction 
with a static beam analysis, shifted with β to a 95% exceedance level .............................62 

Figure 7.7 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction 
with a static beam analysis, shifted with β to a 98% exceedance level .............................62 

Figure 7.8 Computation of exterior girder end shear force for construction load group LG1 .......64 

Figure 7.9 Prediction error for V EXT LG1 using Eqn. (7.17) and a 50% exceedance level: (a) 
For the reduced data set; (b) For the complete large-scale parametric study ....................65 

Figure 7.10 Prediction error for V EXT LG1 using Eqn. (7.17) and a 95% exceedance level: (a) 
For the reduced data set; (b) For the complete large-scale parametric study ....................65 

Figure 7.11 Prediction error for V EXT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method .................................................................................66 

Figure 7.12 Prediction error for V INT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method .................................................................................66 

Figure 7.13 Prediction error for M EXT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method .................................................................................67 



 

xiv 

Figure 7.14 Prediction error for M INT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method .................................................................................67 

Figure A.1 Coordinate system used in the calculation of cross-sectional properties ....................74 

Figure F.1 Load Group 1 loads with the finishing machine located at the midspan to produce 
maximum girder moments ...............................................................................................110 

Figure F.2 Brace configurations considered in the parametric study for 5-girder bridge 
systems with: (a) K-bracing (steel material); (b) X-bracing (either timber or steel 
material) ...........................................................................................................................111 

Figure F.3 Bridge cross-section with only end-span bracing: (a) Isometric view;  (b) Cross-
section at the midspan ......................................................................................................113 

Figure F.4 Bridge cross-section with interior midspan timber X-bracing: (a) Isometric view; 
(b) Cross-section at the midspan ......................................................................................113 

Figure F.5 Bridge cross-section with interior midspan steel X-bracing: (a) Isometric view; 
(b) Cross-section at the midspan ......................................................................................113 

Figure F.6 Bridge cross-section with interior midspan steel K-bracing: (a) Isometric view; 
(b) Cross-section at the midspan ......................................................................................113 

Figure F.7 Bridge cross-section midspan deflection without interior bracing.............................114 

Figure F.8 Bridge cross-section midspan deflection with interior timber X-bracing ..................114 

Figure F.9 Bridge cross-section midspan deflection with interior steel X-bracing .....................114 

Figure F.10 Bridge cross-section midspan deflection with interior steel K-bracing ...................114 

Figure F.11 5-girder, FIB78, 180-ft span, 6-ft girder spacing, 25-in. deck overhang, 0-deg. 
skew bridge configuration: (a) deformed shapes for timber X-bracing; (b) midspan 
displacement quantities for timber X-bracing; (c) deformed shapes for steel X-
bracing; (d) midspan displacement quantities for steel X-bracing; (e) deformed 
shapes for steel K-bracing;  (f) midspan displacement quantities for steel K-bracing ....115 

Figure F.12 Moment (MEXT LG1) prediction error for all bridge configurations (36,288 cases) 
using DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% 
exceedance Note: bridge configurations include different brace materials and 
configurations  (i.e., steel K-bracing, steel X-bracing, and timber X-bracing are 
separate bridge configurations) ........................................................................................116 

Figure F.13 Load Group 1 loads applied at the midspan for a ‘shorter-than-typical’ span 
length: (a) Isometric view; (b) Elevation view ................................................................116 



 

xv 

Figure F.14 Load Group 1 loads applied at the midspan for a typical span length:  
(a) Isometric view; (b) Elevation view ............................................................................116 

Figure F.15 Timber X-bracing cases: (a) Moment for each girder at the midspan for the 
typical bridge configuration; (b) Moment (MEXT LG1) prediciton for the timber X-
brace data set using DFM EXT LG1 in conjunction with a static beam analysis, shifted 
with β to a 95% exceedance .............................................................................................117 

Figure F.16 Steel X-bracing cases: (a) Moment for each girder at the midspan for the typical 
bridge configuration; (b) Moment (MEXT LG1) prediciton for the steel X-brace data set 
using DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% 
exceedance .......................................................................................................................117 

Figure F.17 Steel K-bracing cases: (a) Moment for each girder at the midspan for the typical 
bridge configuration; (b) Moment (MEXT LG1) prediciton for the steel K-brace data set 
using  DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% 
exceedance .......................................................................................................................117 



 

xvi 

LIST OF TABLES 
Table Page 
 
Table 4.1 Span length ranges for FIBs...........................................................................................21 

Table 5.1 Empirically-determined values of ω for different numbers of interior braces ..............33 

Table 5.2 Self-weight (wsw) of each FIB cross-sectional shape (from FDOT, 2012b) .................33 

Table 5.3 Parameter values used in moment-resisting brace  parametric study from BDK75-
977-33 ................................................................................................................................34 

Table 5.4 Selected parameter values used in the present moment-resisting brace parametric 
study ...................................................................................................................................36 

Table 6.1 Varying finishing machine load  (based on FDOT Structures Design Guidelines, 
2016) ..................................................................................................................................46 

Table 6.2 Summary of construction load groups in parametric studies .........................................48 

Table 7.1 Parameter values used in the distribution factor parametric study ................................54 

Table 7.2 Constants for distribution factors (DF) calculation .......................................................63 

Table 7.3 Distribution factor (DF) exceedance values ..................................................................63 

Table A.1 Definitions of cross-sectional properties required for use of a warping beam 
element ...............................................................................................................................73 

Table A.2 Cross-sectional properties of Florida-I Beams .............................................................74 

 



 

1 

CHAPTER 1 
INTRODUCTION 

1.1 Background 

During the process of constructing a highway bridge, there are several construction stages 
that warrant consideration from a structural safety and design perspective. Initially, individual 
girders are lifted by crane and placed into position atop flexible bearing pads located on the 
bridge supports (e.g., abutments or piers). The most critical phase of construction, with regard to 
stability, is after girder placement (prior to the casting of the deck), when girders are supported 
only by bearing pads and can be subject to high lateral wind loads. 

The stage at which wind loading is often most critical occurs when the first girder is 
erected. At this stage of construction, other girders are not present to brace against, hence the 
initial girder can only be anchored to the pier at the ends. For bridge designs in which girder 
stability is a primary concern, girder erection can sometimes be scheduled to minimize the 
exposure period for the initial girder, so that—statistically—it is less likely that peak wind forces 
will occur. However, meeting such a schedule is not always feasible, and adverse weather 
conditions cannot necessarily be anticipated. For example, strong afternoon thunderstorms can 
form rapidly in Florida during the summer months. In such situations, it is important to be able to 
assess in advance whether anchor bracing will be needed to prevent girder collapse under the 
effects of wind loads. 

Furthermore, placement of all girders into their final position constitutes another distinct 
structural stage that must be assessed for safety. In this structural configuration, it is typical for 
temporary braces (Figure 1.1) to be installed between the individual girders to form a more stable 
structural unit (Consolazio and Edwards, 2014). Additionally, one or more girders may also be 
anchored to the bridge supports (Consolazio et al., 2013). Structurally, the system at this stage 
consists of individual girders, bearing pads, braces, potentially anchors, and support structures 
(i.e., substructures). 

 

Figure 1.1 Prestressed concrete girders braced together for stability  

After continued construction progress, another key stage will be reached wherein stay-in-
place (SIP) forms have been installed between the girders and overhang formwork (and 
associated overhang support brackets) have been eccentrically attached to the exterior (fascia) 
girders of the bridge. Loading conditions at this stage consist primarily of vertical ‘construction 
loads’ that are associated with the process of placing the wet (non-structural) concrete deck 
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(Figure 1.2) and finishing it with a finishing machine (i.e., a ‘bridge paver’). During deck 
placement, most of the construction loads are applied eccentrically to overhang formwork and to 
stay-in-place forms. Consequently, both interior and exterior girder moments and end shear 
forces produced by construction loads must be considered in the bridge design process. 
Furthermore, several geometric parameters influence the magnitude and distribution of 
maximum girder moments and girder end shears that are caused by construction loads. 

 

Figure 1.2 Bridge construction loads 

1.2 Objectives 

One objective of the present study was to use analytical models of prestressed concrete 
girders (Florida-I Beams), at multiple stages of construction, to update previously developed 
capacity equations (Consolazio et al., 2013) for wind load and gravity load. Specifically, the 
analytical models were updated to account for a revised definition of sweep—one that included 
not only fabrication sweep, but also thermally-induced sweep. An additional objective was to use 
finite element analysis models of partially constructed bridge systems—consisting of multiple 
Florida-I Beam (FIBs)—with construction loads applied (Consolazio and Edwards, 2014) to 
quantify interior and exterior girder end shear forces and maximum girder moments. Computed 
end shear forces and maximum moments were subsequently used to develop empirical 
construction stage distribution factor (DF) equations. 

1.3 Scope of work 

 Revise sweep definition: In FDOT project BDK75-977-33 (Consolazio et al., 2013), 
results from multiple analytical parametric studies were used to develop simplified 
girder-capacity and bridge-capacity equations. Girder sweep values were intended to 
account for fabrication tolerances, limited to ⅛ in. for every 10 ft of girder length, and not 
to exceed 1.5 in. In the present study, a literature review was conducted to develop an 
updated definition of initial girder sweep—one in which the effects of transverse thermal 
gradients (i.e., thermal sweep) were added and the previously imposed maximum limit of 
1.5 in. removed. 
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 Update previously-developed individual-girder and multi-girder (system) capacity 
equations: Using the revised definition of sweep, analysis procedures and finite element 
models of unanchored FIB bridge girders with wind loads were used to revise the 
BDK75-977-33 equation for unanchored-girder wind capacity [Pmax,0, reported as Eqn. 
(8.2) in Consolazio et al. (2013)]. Additionally, the equation for ‘baseline’ unanchored 
two-girder strut-braced system buckling capacity in zero-wind [C0, reported as Eqn. (9.2) 
in Consolazio et al. (2013)] was updated to reflect the revised definition of sweep. A 
limited-scope parametric study was subsequently conducted to ensure that the equation 
for multi-girder moment-resisting-braced system capacity [C, reported as Eqn. (9.23) in 
Consolazio et al. (2013)], supplemented by the updated baseline equation (C0) remained 
conservative relative to corresponding capacities computed using finite element analyses. 

 Develop distribution factor equations: Bridge modeling and analysis procedures were 
developed and used to conduct a large-scale construction-load parametric study—
covering typical ranges of possible bridge system configurations. Girder end shear forces 
and maximum moments due to superimposed construction loads were quantified and 
subsequently used to develop empirical distribution factor (DF) equations. 
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CHAPTER 2 
PHYSICAL DESCRIPTION OF BRIDGES DURING CONSTRUCTION 

2.1 Introduction 

Girder types under investigation in this study were Florida-I Beams (FIBs), a group of 
standard cross-sectional shapes of varying depths that are commonly employed in Florida bridge 
designs. These beams are typically cast offsite, transported to the construction site, then lifted 
into position one-at-a-time by crane, where they are placed on elastomeric bearing pads and 
braced together for stability. In this chapter, a physical description of the ‘construction-stage’ 
structures under consideration will be provided along with definition of relevant terminology. 

2.2 Geometric parameters 

The term girder system will be used to refer to a group of two or more FIBs braced 
together in an evenly spaced row (Figure 2.1). In addition to span length and lateral spacing, 
several additional geometric parameters define the shape and placement of the girders within a 
system: 

 Grade: Longitudinal incline of the girders, typically expressed as a percentage of rise per unit 
of horizontal length (Figure 2.2). 

 

Figure 2.1 Girder system 

 

Figure 2.2 Definition of grade (elevation view) 

Span LengthGirder Spacing

Bracing

Bearing Pad

Straight beam
with 5% grade

1
0.05

Girder ends supported 
on bearing pads and piers
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 Cross-slope: The transverse incline (slope) of the deck, expressed as a percentage, which 
results in girders that are staggered vertically (Figure 2.3). 

 

Figure 2.3 Definition of cross-slope (section view) 

 Skew angle: Longitudinal staggering of girders, due to pier caps that are not perpendicular to 
the girder axes (Figure 2.4). 

 

Figure 2.4 Definition of skew (plan view) 

 Camber: Vertical bowing of the girder (Figure 2.5) due to prestressing in the bottom flange; 
expressed as the maximum vertical deviation from a perfectly straight line connecting one 
end of the girder to the other.  

 

Figure 2.5 Definition of camber (elevation view) 

 Sweep: Lateral bowing of the girder (Figure 2.6), expressed as the maximum horizontal 
deviation from a perfectly straight line connecting one end of the girder to the other. 

Girders 
remain 
vertical

2% Cross-slope

Skew angle

Cambered Beam

Straight beam configuration

Vertical camber
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Figure 2.6 Definition of sweep (plan view) 

2.3 Bearing pads 

FIB bridge girders rest directly on steel-reinforced elastomeric bearing pads which are the 
only points of contact between the girder and the substructure. There is generally sufficient 
friction between the pad and other structural components so that any movement of a girder 
relative to the substructure (with the exception of vertical uplift) must displace the top surface of 
the pad relative to the bottom surface. As a result, the girder support conditions in all six degrees 
of freedom (three translations, and three rotations) can be represented as finite stiffnesses that 
correspond to the equivalent deformation modes of the pad. These deformation modes fall into 
four categories: shear, compression (axial), rotation (e.g., roll), and torsion. Bearing pad 
stiffnesses in this study were quantified using calculation procedures developed and 
experimentally validated in a previous study (BDK75-977-33, Consolazio et al., 2013) for 
typical Florida bridge bearing pads. 

2.4 Bracing 

As adjacent girders are erected during the bridge construction process, girder-to-girder 
braces (henceforth referred to simply as braces) are used to connect the girders together into a 
single structural unit. At a minimum, braces are installed near the ends of the girders (close to the 
supporting piers); such braces are referred to as end-span braces. In addition, intermediate-span 
braces spaced at unit fractions (1/2, 1/3, 1/4) of the girder length may also be included. For 
example, quarter-point (1/4 span) bracing divides the girder into four (4) equal unbraced lengths 
(Figure 2.7).  

 

Figure 2.7 Girder system with quarter-point bracing 

Beam with sweep imperfection

Straight beam configuration
Lateral sweep
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When skew is present, brace point locations are longitudinally offset (Figure 2.8) 
between adjacent girders because FDOT Design Standard No. 20005: Prestressed I-Beam 
Temporary Bracing (FDOT, 2014a) requires that all braces be placed perpendicular to the 
girders. 

 

Figure 2.8 Perpendicular brace placement on skewed bridge (plan view) 

Braces are typically constructed from timber or steel members, but individual brace 
designs are left to the discretion of the contractor, so a variety of different bracing configurations 
are possible. Common types of braces used in practice in Florida include X-braces (Figure 2.9a) 
and K-braces (Figure 2.9b). Braces are typically attached to the girders using bolted connections 
or welded to cast-in steel plates.  

 
(a) (b) 

Figure 2.9 Common brace types: (a) X-brace; (b) K-brace 

  

Interior
brace point

Perpendicular
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CHAPTER 3 
GIRDER SWEEP INCLUDING THERMAL GRADIENT EFFECTS 

3.1 Introduction 

A primary objective of the present study involved revising previously developed girder 
capacity equations (for wind load and gravity load) to account for a revised definition of girder 
sweep. Previous girder capacity equations were developed from finite element analysis (FEA) 
models used in BDK75-977-33 (Consolazio et al., 2013), where girder capacity was reached 
when a girder (or girder system) became unstable. Lateral deflection, and ultimately instability of 
the analytical models was initiated by the introduction of girder imperfections (i.e., sweep). In 
the present study, the definition of girder sweep has been revised by removing the previously 
imposed maximum fabrication limit of 1.5 in. and by including the effects of transverse thermal 
temperature gradients (i.e., thermal sweep). 

3.2 Literature review: thermal sweep 

In Lee (2010), equations for determining maximum vertical and lateral deflections caused 
by solar-induced thermal gradients were presented for four (4) typical AASHTO-PCI bridge 
girder types. Lee used finite element heat transfer models, validated using experimental test data, 
to calculate non-linear temperature gradients for prestressed concrete girders of varying cross-
sectional shapes. Each finite element model incorporated environmental conditions that included 
the solar radiation level (based on geographic location), ambient air temperature, and wind 
speed. By imposing ‘extreme’ environmental conditions (determined from monthly averages of 
data recorded over a 30 year period) on each finite element model, Lee computed transverse non-
linear temperature gradients in the top flange, web, and bottom flange of four (4) typical 
AASHTO-PCI bulb-tee bridge girders. Primary environmental conditions employed in the study 
were established for the Atlanta, Georgia geographical area. However, to further assess 
temperature gradients for different geographical locations, Lee also evaluated extreme 
environmental conditions for seven (7) additional cities, distributed across the continental United 
States. Of the eight (8) cities considered, Atlanta, Georgia was closest in proximity to the state of 
Florida, therefore data for Atlanta were used in the present study (BDV31-977-46) to quantify 
thermally induced sweep values for Florida FIB girder sections. 

Using both experimentally measured temperature data as well gradients computed from 
finite element thermal analyses, Lee (2012) also proposed a set of simplified transverse 
temperature gradients (replicated in Figure 3.1) for the top flange, web, and bottom flange of 
prestressed concrete girders. Using the proposed simplified gradients, maximum transverse 
deflection (i.e., sweep) induced by thermal gradients can be calculated for general bridge girder 
shapes and arbitrary span lengths by employing procedures such as moment-curvature analysis. 
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Figure 3.1 Transverse thermal gradients of prestressed concrete bridge girders                            
proposed by Lee (2012): (a) Top flange; (b) Web; (c) Bottom flange 

To assess the accuracy of both the maximum thermal sweep equations and the simplified 
thermal gradients, thermal sweep data were analytically computed using the equations proposed 
by Lee, and then compared to experimentally measured thermal sweep data published in the 
literature. Experimental data used in this evaluation process were obtained from an investigation 
of a bridge collapse in Arizona (CTL Group, 2007), and from research conducted for the Georgia 
DOT (Hurff, 2010). After computing tolerance limits on fabrication-related sweep imperfection, 
as set forth in the PCI Bridge Design Manual (2011), Hurff (2010) demonstrated that maximum 
experimentally measured thermal sweep was as much as 48% of the maximum allowable 
fabrication sweep. In a separate experimental study, measured sweep data reported by the CTL 
Group indicated a maximum thermal sweep of 0.65 in. for a 114 ft girder. At this magnitude, 
thermal sweep was approximately 46% of the allowable fabrication sweep for a girder of the 
same length. Analytical sweep values computed using the maximum sweep equations proposed 
by Lee (2010) were found to be in good agreement with the experimental data reported by Hurff 
(2010) and the CTL Group (2007). 

The simplified gradients proposed by Lee (2012) were derived from non-linear 
temperature gradients computed from finite element thermal analyses (FEA) of typical BT-63 
and Type-V girder cross-sections. Each such simplified gradient (Figure 3.2a)  consisted of a 
descending ‘left side’ branch corresponding to the side of the girder directly exposed to solar 
radiation, and an ascending ‘right side’ branch corresponding to secondary solar heating. To 
ensure that conservatively large predictions of maximum thermal sweep were obtained for 
prestressed concrete bridge girders, the rise in temperature on the ‘right side’ of the FEA 
gradients was omitted from the simplified gradients proposed by Lee (2012, Figure 3.2b). Lateral 
sweeps computed using these simplified (‘left side’ only) gradients will produce larger (i.e., 
more conservative) thermal sweep quantities than those computed using the more complex, two-
sided gradients. To avoid introducing excess-conservatism into the thermal sweeps calculated in 
the present study, an approximate ‘right side’ ascending branch was added to the simplified (‘left 
side’ only) gradients proposed by Lee (2012). Using the two-sided non-linear FEA temperature 
gradients documented by Lee (2010), a temperature ratio (λ) was computed as: 
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,

1,

R FEA

FEA

T

T
   (3.1)

An approximate ‘right side’ linear ascending branch (Figure 3.2c) of the gradient was then 
defined as maximizing at temperature TR,SIMP (Figure 3.2c) where: 

 1R,SIMP ,SIMPT T
 (3.2)

and 1,SIMPT  is the maximum ‘left side’ temperature from the simplified gradients proposed by Lee 

(2012). The simplified gradient proposed by Lee (2012) for the bottom flange also omitted an 
ascending right side branch; therefore, a quantity, TR,SIMP, was similarly approximated for the 
bottom flange in the same fashion as described above. Combining this ‘ascending branch 
approximation’ together with the simplified gradients from Figure 3.1, produced final gradients 
for top flange, web, and bottom flange (Figure 3.3) that were used in the present study. 

Lee (2010) determined that winter and summer seasonal conditions produced the 
maximum and minimum transverse thermal movements, respectively. Because winter conditions 
produced the largest thermal movements, for conservativism, Lee (2010) recommended that 
winter temperature gradient data (e.g., T1,SIMP) be used in computing prestressed concrete bridge 
girder thermal sweep. As noted earlier, the gradients quantified by Lee were based on ‘extreme’ 
environmental (seasonal) conditions in Atlanta, Georgia. Florida, however, is located in a more 
temperate climate (environment) than Atlanta, Georgia. Consequently, to avoid introducing 
excess conservatism into the calculation of thermal sweep for Florida-I Beams, an average of the 
winter and summer thermal sweeps proposed by Lee was used in the present study. 

Before applying this approach to the calculation of thermal sweep values for FIB girders, 
it was first applied to the BT-63 girder cross-section studied by Lee to ensure that suitable results 
were obtained. For purposes of comparing results from the different approaches, a ‘sweep ratio’ 
was defined as the maximum thermal sweep divided by the maximum allowable fabrication 
sweep. Using the maximum thermal sweep equations provided in Lee (2010), calculations were 
performed for a BT-63 girder at varying span lengths for winter conditions, summer conditions, 
and the average of these two (Figure 3.4, lines). Next, thermal gradients were formed per 
Figure 3.3, applied to the BT-63 cross-section for various span lengths, and thermal sweep ratios 
were computed (Figure 3.4, symbols). Examining the ‘average of winter and summer’ data in 
Figure 3.4, it is evident that there is good agreement between the BT-63 results derived from 
detailed thermal FEA analyses (the Lee 2010 data) and the ‘Lee (2012) plus approximate 
ascending branch’ approach proposed herein. Based on these results, the latter approach (i.e., 
Figure 3.3) was deemed to be suitable for use in computing thermal sweep data for Florida-I 
Beam sections at varying span lengths. 
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T1,FEA

TR,FEA

BT-63 temperature gradient per Lee (2010)

 

(a) 

T1,SIMP

Simplified temperature gradient proposed by 
Lee (2012) for prestressed concrete bridge girders

 

(b) 

T1,SIMP

TR,SIMP

Simplified temperature gradient proposed by 
Lee (2012) supplemented by additional 

approximated ascending branch to TR,SIMP

 

(c) 

Figure 3.2 Top flange transverse thermal gradient:                                                              
(a) From finite element analysis of a typical BT-63 girder (Lee, 2010);                                              

(b) Simplified gradient proposed by Lee (2012);                                                                
(c) Approximated right side ascending branch (BDV31-977-46) 
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Figure 3.3 Transverse thermal gradients for FIB bridge girders:  
(a) Top flange; (b) Web; (c) Bottom flange 

 

Figure 3.4 Comparison of sweep ratios computed for BT-63 girder (at varying span lengths) as 
computed using different methods  

 

3.3 Thermal sweep for Florida-I Beams 

Total thermal sweep deflections were calculated for each Florida-I Beam (FIB) cross-
sectional shape—at multiple span lengths (minimum practical, intermediate, and maximum 
practical)—using the gradient formation approach described above and using moment-curvature 
analysis (see Appendix B). For each pair of FIB section type and span length, upper and lower 
bounding values of thermal sweep (Figure 3.5) were calculated using winter temperature data 
(Lee, 2012) and summer temperature data (Lee, 2010). Subsequently, the total thermal sweep 
deflections were converted into thermal ‘sweep ratios’ (Figure 3.6) by dividing by the allowable 
fabrication sweep. Partially as a consequence of the fact that all FIB sections have the same top 
and bottom flange width and geometry, the computed sweep ratios were found to correlate to 
span length in an approximately linear manner. Based on this observation, individual linear best-
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fit relationships between thermal sweep ratio and span length were constructed from the winter 
sweep data and summer sweep data. A seasonally averaged Florida-I Beam (FIB) thermal sweep 
ratio relationship (Figure 3.6) was then constructed by averaging the best fit winter and summer 
curves. Functionally, this relationship has the form: 

0 00572 0 05927FIBsr . L .   (3.3)

where srFIB is the seasonally averaged FIB sweep ratio, and L is the span length in ft. To compute 
total lateral sweep imperfections for use in girder stability analyses, thermal sweep was 
superimposed with the maximum allowable fabrication sweep as: 

 1fabrication thermal FIB fabrications s s sr s     (3.4)

Substituting Eqn. (3.3) into Eqn. (3.4), and defining maximum allowable fabrication sweep 
specified in the PCI Bridge Design Manual (2011) as ⅛ in. for every 10 ft of girder length, the 
total lateral sweep used in the present study for FIB girders was: 

    1 0 00572 0 0593 10 1 8FIBs . L . L "    (3.5)

which can be mathematically simplified to: 

   0 941 0 00572 10 1 8FIBs . . L L "   (3.6)

where FIBs  is the total sweep (lateral imperfection) in inches, and L is the span length in ft. 

 

Figure 3.5 Thermal sweep data for FIB sections 
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Figure 3.6 Thermal sweep ratios for FIB sections 
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CHAPTER 4 
DEVELOPMENT OF UNANCHORED SINGLE-GIRDER WIND  

CAPACITY EQUATION 

4.1 Introduction 

To update previously developed girder capacity equations—considering the revised 
definition of sweep—systems of FIB girders were modeled (Figure 4.1) and structurally 
analyzed using the ADINA (2016) finite element analysis code. The models incorporated bearing 
pad support stiffnesses, and were capable of capturing buckling behavior of FIBs, while 
remaining computationally efficient enough that thousands of parametric analyses could be 
performed. Models analyzed in the present study were developed in a semi-automated fashion by 
extending a modeling methodology developed in a previous study (BDK75-977-33, 
Consolazio et al., 2013) to include the revised definition of sweep. 

In the global coordinate system employed in the models, X corresponded to the 
transverse direction, Y to the longitudinal direction, and Z to the vertical direction. A local girder 
coordinate system (u,v,w) was also used corresponding to the same directions, with the origin at 
one end of the girder at the centroid of the cross-section. Girder buckling capacities were 
quantified using geometrically-nonlinear large-displacement analyses in which static loads were 
applied in incremental steps, taking into account the deformed state of the structure at each load 
step. Instability was initiated by introducing girder fabrication imperfections (i.e., sweep) into the 
models, so that each load step (load increment) caused the models to deform to ever greater 
levels. By analyzing the load-displacement results (using a modified Southwell analysis; see 
Consolazio et al., 2013), it was possible to determine when girder displacements began growing 
asymptotically, indicating a collapse. 

 

Figure 4.1 Finite element model of a single FIB (isometric view) 

4.2 Modeling of bridge girders 

Each bridge girder was modeled using warping beams, an advanced beam element 
formulation provided by ADINA (2016) that incorporates degrees of freedom representing 
torsionally-induced out-of-plane warping of the cross-section. Warping beams are primarily 
intended for modeling thin-walled sections for which warping effects can significantly affect 
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structural response, but they also have several additional refinements that make them superior to 
standard Hermitian beam elements for buckling analysis applications. For example, offsets 
between the shear center and the centroid of asymmetric cross-sections are accounted for 
automatically, and the kinematic formulation of the element includes coupling between bending 
and torsional deformation modes.  

Warping beams require the calculation of a comprehensive set of cross-sectional 
properties, several of which require knowledge of the warping function, which cannot be 
calculated in closed-form (for complex shapes) and must therefore instead be solved for 
numerically. Details relating to the section properties previously calculated in BDK75-977-33 for 
FIB cross-sectional shapes are included in Appendix A of the present report. 

Construction sweep tolerances implemented in the present study (BDV31-977-46) were 
determined from Eqn. (3.6), which includes maximum allowable fabrication imperfections 
limited to ⅛ in. for every 10 ft of girder length and an additional superimposed thermal sweep. 
To ensure conservative calculations of buckling capacity, all FIBs were modeled with the 
maximum allowable sweep (umax), as determined from span length and Eqn. (3.6). 
Geometrically, sweep was implemented using a sinusoidal function (Figure 4.2) with the 
maximum allowable sweep at midspan, so that the lateral deviation, u, at any position, v, along 
the girder length was: 

max( ) sin
v

u v u
L

   
 

 (4.1)

 

Figure 4.2 Representation of sweep in FIB model (plan view) 

During early phases of constructing a bridge, the deck is not present and hence the weight 
of the deck is not yet present. Consequently, the girders will have more camber at this stage than 
they will have in the completed configuration of the bridge (when deck self-weight is active). It 
was therefore important to represent the ‘deck-free’ girder camber condition in the models, 
because the additional elevation of the girder center of gravity reduces buckling capacity by a 
small amount. In BDK75-977-33, to establish maximum probable girder camber for use in model 
development, trial beam designs were produced for all eight (8) FIB cross-sections with the goal 
of maximizing camber. This was accomplished by placing all prestressing tendons as low as 
possible in the bottom flange and finding the span length at which camber was maximized. 
Long-term creep effects were ignored and it was further assumed that cracking did not occur. 
From these calculations, it was determined that 3.25 in. was a reasonable upper bound camber 
for FIB girders during construction. 

It is important to recognize that the measured camber of a bridge girder in the field is a 
superposition of two independent deflections: an upward deflection caused by prestress forces 
and a downward deflection caused by the self-weight of the girder. The initial (undeformed) 
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geometry of a finite element model should represent its free-body state, prior to the application 
of any external loads, including gravity loads. Therefore, it was necessary to add additional 
camber to the models to offset the expected self-weight deflection. In other words, the geometric 
camber included in the finite elements models represented only the upward deflection caused by 
prestressing so that after self-weight was applied to the model, the total deflection would match 
the camber that would be measured in the field. As a result, each girder model was assigned a 
maximum geometric camber (wmax) of: 

4

max

5
3.25 in.

384

A L
w

EI


   (4.2)

where A is the girder cross-sectional area, γ is the unit weight of the concrete, L is the span 
length, E is the elastic modulus, and I is the strong-axis moment of inertia. 

Because geometric camber in the models represented upward deflections caused by 
straight prestressing tendons (which generate a constant internal moment throughout the length 
of the beam), the girder camber was implemented with a parabolic shape (Figure 4.3) so that the 
vertical deviation, w, at any point, v, along the girder length was: 

2

max( ) 4
v v

w v w
L L

         
     

 (4.3)

 

Figure 4.3 Representation of camber in FIB model (elevation view) 

4.2.1 Modeling of end supports 

Girder support stiffnesses were modeled with six (6) geometrically linear springs to 
represent the stiffness of the bearing pad in each degree of freedom, with each spring 
corresponding to one of the four (4) main deformation modes of the pad: shear, axial, torsion, 
and roll (Figure 4.4). Pad stiffnesses were computed using the methods discussed in Consolazio 
et al. (2013). 

4.2.2 Bearing pad selection 

Seven (7) standard types of elastomeric bearing pad are provided in Design Standard No. 
20510: Composite Elastomeric Bearing Pads – Prestressed Florida-I Beams (FDOT, 2012a) for 
use with FIBs. During design, selection of the type of pad that will be used in a particular bridge 
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is based on thermal expansion and live load deflection limit states of the completed bridge, 
neither of which can be predicted based solely on girder dimensions (cross-sectional and span 
length). As such, it is not appropriate to assume that for each FIB type, there is a specific 
corresponding type of bearing pad that would be utilized. Hence, in BDK75-977-33 and in the 
present study, it was conservatively assumed that the pad type with the lowest roll stiffness 
(which will produce the lowest buckling capacity) would be used in conjunction with all FIB 
types. After calculating the roll stiffness of every standard FDOT FIB pad type, using the 
grillage method discussed in Consolazio et al. (2013), the Type J bearing pad was selected for 
use. 

 

 

Figure 4.4 Bearing pad stiffness springs in FIB model (isometric view) 

4.2.3 Axial load selection 

The amount of axial load applied to a bearing pad does not change the initial linear 
portion of the roll stiffness curve, but it does affect the moment required to initiate girder roll-off 
from the pad. Reducing the compressive axial load on a pad reduces the moment that is required 
to cause girder roll-off. Additionally, reducing girder span length reduces girder self-weight 
which, in turn, reduces the axial loads on the bearing pads. Therefore, to be conservative in this 
study, the minimum length ranges for each FIB shape were determined from design aids in 
Instructions for Design Standard No. 20010: Prestressed Florida-I Beams (IDS 20010; FDOT, 
2012b) and the minimum expected axial pad load was calculated for each FIB shape. (These 
calculations assumed that the girders were simply supported. Additionally, the effects of wind 
uplift forces were conservatively ignored). Using this process, a single worst-case (minimized) 
roll stiffness curve was calculated for each type of FIB, resulting in a total of seven (7) bearing 
pad moment-rotation curves. 

  Girder centroid

Rigid link

X

Y

Z

kshear
kshear

kaxial

ktorsion

kroll,overturning kroll,bending



 

19 

4.2.4 Girder slope selection 

Overturning (roll) pad stiffness is reduced by the presence of girder slope, which can 
arise from a combination of girder camber and bridge grade. According to Instructions for 
Design Standard No. 20510: Composite Elastomeric Bearing Pads – Prestressed Florida-I 
Beams (IDS 20510; FDOT, 2012c), the maximum expected slope angle in the completed bridge 
is 0.0125 rad, because if this angle is exceeded, beveled bearing plates must be installed to 
eliminate slope. Therefore, the maximum expected camber prior to the casting of the deck is the 
sum of 0.0125 rad and any camber-induced slope that is negated by the downward deflection 
under the weight of the deck and other superimposed dead loads (SDL). After a series of trial 
beam design calculations was performed in BDK75-977-33, it was determined that a reasonable 
upper limit for the SDL-negated slope was 0.01 rad. Additionally, AASHTO LRFD (2010) 
recommends an “allowance for uncertainties” of 0.005 rad with regard to bearing pad slope 
angle. The maximum completed slope of 0.0125 rad, the SDL-negated slope of 0.01 rad, and the 
slope uncertainty of 0.005 rad combined for a total maximum slope angle of 0.0275 rad. This 
was conservatively rounded up to a slope angle of 0.03 rad, which was used to compute the 
bearing pad overturning roll stiffness curves. 

4.2.5 Load application to individual bridge girders 

Two types of structural loads were included in the models: wind and gravity. Lateral 
wind loads, calculated for each girder using the design drag coefficients proposed in Consolazio 
et al. (2013) for FIBs, were applied to the girder elements as tributary nodal loads (Figure 4.5a). 
Small overturning moments were also applied at each node to compensate for the eccentricity 
between the centroid of the cross-section (where the nodes and elements were located) and the 
center of pressure (where the lateral load was assumed to act on the girder) (Figure 4.5b). Wind 
loads were always applied in the direction of increasing girder sweep. 

 
(a) 

 
(b) 

Figure 4.5 Representation of wind load in structural models: 
(a) Lateral nodal loads (top view); (b) Overturning moments (section view) 

Gravity load was applied as a vertical ‘acceleration load’ (i.e., a mass-proportional body 
force) in units of g, the acceleration due to gravity, so that a load of 1 g represented the self-
weight of the girder. In field conditions, girders are always subjected to a constant gravity load of 
1 g. However, in the structural models analyzed in this study, gravity loading was used to initiate 
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instability. After wind loads were applied, gravity load was linearly ramped up—beyond 1 g if 
possible—until girder instability occurred. Subsequently, the capacity of the system was 
expressed as a gravity load (in g), which can also be thought of as a capacity-to-demand ratio. 
For example, if a system became unstable at a gravity load of 1.5 g, then the ratio of capacity 
(1.5 g) to demand (1 g) was 1.5. 

4.3 Parametric study of unanchored individual bridge girders 

Using the updated sweep Eqn. (3.6), a parametric study was performed using ADINA to 
analyze finite element models of single unanchored Florida-I Beams (FIBs) over a range of span 
lengths. Each stability analysis in the parametric study was performed for the purpose of 
quantifying the maximum lateral wind load that could be applied before girder instability 
occurred. For each model, the vertical load carrying capacity was evaluated several times at 
different lateral wind pressures, iterating until the vertical capacity was within 1% of 1 g (i.e., 
girder self-weight). The resulting wind pressure for each case was denoted as the lateral wind 
capacity of that girder. 

4.3.1 Selection of parameters 

Girder parameters that were varied in the parametric study were the FIB cross-section 
depth (in.) and span length (ft). All eight (8) standard FIB cross-sections were included in the 
study, with depths ranging from 36 in. to 96 in. In BDK75-977-33 (Consolazio et al., 2013), 
bridge grade was found to have negligible effect on wind capacity; therefore in the present study, 
all analyses were performed at a level (0%) grade. 

Material properties assumed for the prestressed concrete FIBs were fc′ = 8.5 ksi, unit 
weight = 150 pcf, and Poisson's ratio = 0.2. Using these values and equations provided in PCI 
(2010), the concrete elastic modulus was computed to be E = 5589 ksi. It should be noted that in 
BDK75-977-33 (Consolazio et al., 2013), the concrete strength was assumed to be fc′ = 6.5 ksi 
(with corresponding E = 4887 ksi). In a related follow-up study, BDK75-977-70 (Consolazio and 
Edwards, 2014), the concrete strength was adjusted to fc′ = 8.5 ksi to better represent typical 
conditions in Florida bridge construction practice. In the present study, the updated value of 
fc′ = 8.5 ksi was retained.  

Span length ranges for each FIB section used in the parametric study were in accordance 
with those determined previously in BDK75-977-33. Maximum and minimum span lengths were 
based on design aids included in Instructions for Design Standard No. 20010: Prestressed 
Florida-I Beams (IDS 20010; FDOT, 2012b). This document provides estimated span lengths 
(Table 4.1) for FIBs with different lateral spacings, based on representative bridge design 
calculations. Maximum span lengths were based on a girder spacing of 6 ft and an environment 
classified as “Moderately Aggressive”, while minimum lengths assumed a 12-ft girder spacing 
and an “Extremely Aggressive” environment. Additionally, per FDOT request, maximum span 
lengths 10 ft longer than the maximums considered in BDK75-977-33 were added to the 
parametric study. Span lengths were incremented at 5-ft intervals over the final chosen ranges 
(Table 4.1). 
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Table 4.1 Span length ranges for FIBs 

Values from IDS 20010 

 Min length (ft) Max length (ft) Final range 

36″ FIB  80 105  75–120 

45″ FIB  98 126  95–140 

54″ FIB 113 142 110–155 

63″ FIB 124 155 120–170 

72″ FIB 142 173 135–190 

78″ FIB 151 182 145–195 

84″ FIB 159 191 155–205 

96″ FIB 175 208 170–225 

     

Spacing 12 ft 6 ft   

Environment Extremely aggressive Moderately aggressive   

 

4.3.2 Updated wind capacity of a single unanchored girder 

The relationships between wind capacity and span length, as previously determined in 
BDK75-977-33 (without inclusion of thermal sweep), and as determined in the present 
parametric study (with inclusion of thermal sweep) are compared in Figure 4.6. As expected, 
including thermal sweep had the effect of reducing wind load capacities, particularly at longer 
span lengths. Also, similar to the BDK75-977-33 results, capacity data from the present study 
indicated that span length was the strongest predictor of wind capacity. Girder depth was found 
to have a secondary influence in that increasing the depth decreased the wind capacity (due to the 
increased ‘sail area’).  

In BDK75-977-33, the data shown in Figure 4.6a were used to construct the following 
wind capacity equation [cited as Eqn. (8.2) in Consolazio et al. (2013)]: 

100 1622
0 123 1 15 750 16

L DD

max,P e e e
  

    
   

(4.4)

where Pmax,0 is the wind capacity in psf, L is the span length in ft, and D is the FIB cross-section 
depth in inches. Using 1) the general ‘functional form’ of Eqn. (4.4), 2) the updated capacity data 
shown in Figure 4.6b, and 3) an improved curve-fitting process, the following updated wind 
capacity equation for unanchored girders was constructed: 

55 79 72
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1 1
63 15 34

3 8

L D D

max,P e e e
   

    
 

 (4.5)

where Pmax,0 is the wind capacity in psf, L is the span length in ft, and D is the FIB cross-section 
depth in inches. 
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(a) 

 

(b) 

Figure 4.6 Wind capacities for unanchored FIBs: 
(a) Data from BDK75-977-33 (without inclusion of thermal sweep);  

(b) Data from present study (with inclusion of thermal sweep) 

When forming Eqn. (4.4) in BDK75-977-33, a multi-stage curve fitting process was used 
in which individual curves were initially fit to the capacity vs. span-length data for each FIB 
type, followed by a subsequent curve fitting process that was applied to the coefficients from the 
individual FIB fits. In contrast, when forming Eqn. (4.5) in the present study, error in the curve 
fitting process was simultaneously minimized across the entire data set (i.e., all span lengths and 
all girder types/depths shown in Figure 4.7b) at one time. (Subsequent to this process, minor 
adjustments were made to the fitting coefficients to ensure conservative capacities were obtained 
for all data points in the data set). As Figure 4.7 indicates, the updated ‘simultaneous’ fitting 
process yielded a capacity equation that fit the trends in the underlying data better than did the 
original equation developed in BDK75-977-33. 

Span length (ft)

W
in

d 
ca

pa
ci

ty
 (

ps
f)

75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
36 FIB
45 FIB
54 FIB
63 FIB
72 FIB
78 FIB
84 FIB
96 FIB

Span length (ft)

W
in

d 
ca

pa
ci

ty
 (

ps
f)

75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150
36" FIB
45" FIB
54" FIB
63" FIB
72" FIB
78" FIB
84" FIB
96" FIB



 

23 

 

(a) 

 

(b) 

Figure 4.7 Wind capacity of an unanchored FIB: 
(a) Data from Figure 4.6a and Eqn. (4.4) [i.e., Eqn. (8.2) from BDK75-977-33]; 

(b) Data from Figure 4.6b and Eqn. (4.5) developed in present study 
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CHAPTER 5 
DEVELOPMENT OF UNANCHORED STRUT-BRACED TWO-GIRDER 

BUCKLING CAPACITY EQUATION 

5.1 Introduction 

To develop an updated unanchored strut-braced two-girder buckling capacity (C0) 
equation—accounting for the revised definition of sweep—multi-girder systems of FIBs were 
modeled and analyzed using ADINA (2016). Structural modeling techniques used in the present 
study matched those previously developed in BDK75-977-33 (Consolazio et al., 2013). For the 
convenience of the reader, a summary is provided below of material in Consolazio et al. (2013) 
that is pertinent to the development of a revised baseline capacity (C0) equation. 

5.2 Review of multi-girder system-related information from BDK75-977-33 

5.2.1 Preliminary sensitivity studies 

In BDK75-977-33, several system parameters were identified as having negligible 
influence on system capacity. Consequently, these parameters were not varied in the final 
parametric studies. The parameters were:  

 Bridge grade: All analyses were performed on girder models with level (0%) grade. 

 Cross-slope: Multi-girder models had a default −2% cross-slope. 

Preliminary studies revealed that braces were naturally divided into two categories that 
had very different effects on system behavior: strut braces and moment-resisting braces. As a 
result, separate parametric studies were performed for each brace category. 

5.2.2 Strut braces 

Top struts and parallel struts (Figure 5.1) are both examples of strut braces, which include 
(but are not limited to) all brace designs consisting solely of horizontal compression members. In 
BDK75-977-33, it was found that all strut brace designs are essentially interchangeable with 
regard to lateral stability. That is, a girder system braced with top struts has the same capacity as 
an otherwise identical system braced instead with parallel struts (or any other type of strut brace). 
As a result, the capacity of a strut-braced system is also insensitive to girder spacing (which only 
affects the length—and thus the axial stiffness—of the strut members).  
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Timber compression strut

Timber support Nails (not all shown)

 
(a) 

Timber compression struts

 
(b) 

Figure 5.1 Examples of strut bracing: (a) Top strut; (b) Parallel struts 

Strut braces can be defined (or identified) by their lack of resistance to girder 
overturning. In a small-displacement (geometrically linear) analysis of a system with zero 
bearing pad rotational stiffness, a strut with ideal pin connections forms a collapse mechanism 
(Figure 5.2) that allows the connected girders to rotate freely in unison. Therefore, struts can 
only provide stability by coupling the girders together, and resistance to collapse is primarily 
provided by the roll stiffness of the anchors and, to a lesser extent, the roll stiffness of the 
bearing pad supports. 

Pinned connections

 
(a) 

Pinned 
boundary conditions

Strut

 
(b) 

Figure 5.2 Collapse mechanism possible with strut bracing: 
(a) Undeformed configuration; (b) Collapse mechanism 

5.2.3 Moment-resisting braces 

X-braces and K-braces (Figure 5.3) are both examples of moment-resisting braces, which 
are capable of resisting girder overturning. Unlike struts, the system capacity provided by 
different moment-resisting brace designs varies significantly, and capacity can be increased by 
the installation of braces at interior brace points. Systems with moment-resisting braces become 
more stable as additional girders are added; hence a two-girder system is nearly always the most 
unstable bridge cross-section possible. In the presence of moment-resisting bracing, the 
additional roll stiffness and stability provided by anchors is typically negligible.  
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(a) 

Steel angles

 
(b) 

Figure 5.3 Examples of moment-resisting braces: (a) X-brace; (b) K-brace 

5.2.4 Modeling of braces 

Because the design of bracing has historically been left to the discretion of the contractor, 
a wide variety of bracing configurations are used in practice. Consequently, in BDK75-977-33, it 
was not possible for every potential brace configuration to be represented in the parametric 
studies. After conducting a survey of bracing designs used in the construction of bridges 
throughout Florida, four (4) representative brace configurations were identified: 

 Top strut (Figure 5.4a): a horizontal timber compression strut situated between the edges 
of the top flanges. The top strut is typically nailed to the underside of a slightly longer 
timber member, creating ‘lips’ that rest on the top of the flanges. 

 Parallel strut (Figure 5.4b): Two (or more) horizontal timber compression struts wedged 
in place between the girder webs. 

 X-brace (Figure 5.4c): Two diagonal timber members wedged between the webs that 
cross in the middle to form an ‘X’ shape. A steel bolt typically passes through both 
members at the crossing point to create a hinge. 

 K-brace (Figure 5.4d): Steel members (typically steel angles) welded together into a ‘K’-
shaped frame and welded or bolted to steel plates cast into the webs. 

The majority of brace designs that were encountered were variations of one of these four basic 
configurations. 

For analysis purposes, braces were modeled primarily with beam elements, with each 
brace member represented by a single element. At the girder connection points, rigid links were 
used to connect the braces to the girder elements (i.e., warping beams located at the girder 
centroids). It was assumed that the brace-girder connections were ideal pins, which was 
conservative with regard to girder stability. Pins and hinges were modeled with beam end-
releases and nodal constraints, respectively. 

In BDK75-977-33, during the survey of bracing designs, the vast majority of timber 
braces that were encountered were composed of 4x4 Southern Pine sawn lumber. According to 
the National Design Specification for Wood Construction (AF&PA, 2005), 4x4 Southern Pine 
has a 3.5″ x 3.5″ square cross-section and an elastic modulus of E = 495 ksi (based on an Emin of 
550 ksi for 4-inch-wide “Construction-grade” lumber and a Wet Service Factor of 0.9). These 
properties were used to model all timber brace members including the top strut, parallel strut, 
and X-brace. Based on a typical bridge bracing design that was acquired during the survey, 
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K-brace members were modeled as 4″ x 4″ x ⅜″ steel angles, with an elastic modulus of 
E = 29000 ksi. 

 

Timber compression strut

Timber support Nails (not all shown)
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Warping beam 
elements (typ.)

End release (typ.)

(a) 

Timber compression struts Beam elements

(b) 

Timbers

Steel connection bolt
Two nodes with 
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Ends released at girder 
connection points (typ.)

 
(c) 

Steel angles

(d) 

Figure 5.4 Representation of brace configurations in FIB system models: 
(a) Top strut brace; (b) Parallel strut brace; (c) X-brace; (d) K-brace 
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5.2.5 Modeling of bridge skew and wind load 

In BDK75-977-33, the final proposed design wind loads (Figure 5.5) were based on a 
basic ‘reduction-and-recovery’ trend that was observed in all tested configurations (Consolazio 
et al., 2013). An initial pressure coefficient (CP) (i.e., CD,eff) was assigned to G1 based on the 
type of girder section: 2.0 for FIBs. Girder G2 was assigned a CP of 0 (i.e., no load) while G3 
and all subsequent girders were assigned a CP equal to half of the load on the windward girder. 

Pressure coefficients at each girder position:
CP,1

C  = 0P,2

C  = 0.5CP,3 P,1 C  = 0.5CP,n P,1

G1 G2 G3 G4 G5 G6 Gn

G1 G2 G3 G4 G5 G6 Gn

 

Figure 5.5 Proposed wind load shielding model for stability evaluation from BDK75-977-33 

In a braced system of girders, the introduction of bridge skew causes the girders to 
become staggered longitudinally. This affects system capacity in two ways (Figure 5.6): 

 Brace placement: Because girders are installed perpendicular to the girder axes (per 
Design Standard No. 20005: Prestressed I-Beam Temporary Bracing, FDOT, 2014a), the 
region within which braces can be placed is smaller (shorter) than the span length of the 
girders. As a result, girder stability can increase due to the reduced distance between 
brace points. 

 Incomplete shielding: In a skewed system, none of the girders are completely shielded 
with respect to wind load. Rather, an end portion of each girder is exposed to full 
(unshielded) wind pressure. In BDK75-977-33, the aerodynamic properties of the 
exposed end region were not measured in a wind tunnel, so specific ‘edge effects’ that 
may result from the presence of upwind girders are unknown. 

The magnitude of both of these effects is a function of the girder offset length (Loffset, Figure 5.6) 
which is dependent on both skew angle and girder spacing. 
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Figure 5.6 Effect of bridge skew on wind loading of braced 3-girder system (plan view): 
(a) Unskewed system; (b) Skewed system 

Conducting wind tunnel testing to experimentally quantify the effects of skew on girder-
end shielding was outside the scope of BDK75-977-33. Consequently, the non-uniform wind 
pressure distribution shown for leeward girders in Figure 5.6b was an approximation based on 
engineering judgment. Lacking wind tunnel confirmation of this approximation, it was deemed 
unwarranted to model this distribution in detail. Instead, a simplified, but statically similar, 
representation was used in which the wind load on each girder was modeled as a single, 
weighted-average uniform pressure along the entire length of the girder. The uniform wind load 
applied to each partially-shielded girder (P) [reported as Eqn. (9.1) in Consolazio et al., 2013] 
was computed as a weighted average of the shielded and unshielded wind loads, as follows: 

offset offset
U S

L L L
P P P

L L


   (5.1)

where PU is the unshielded wind load (on the windward girder), PS is the shielded wind load, L 
is the girder length, and Loffset is the length of girder offset produced by skew. 
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5.3 Parametric study of system capacity of unanchored two-girder system in zero wind 

Using the updated sweep Eqn. (3.6), a parametric study was performed using ADINA 
(2016) to analyze finite element models of strut-braced systems, consisting of two (2) Florida-I 
Beams (FIBs) without anchors and without wind load, over a range of span lengths. Each 
stability analysis in the parametric study was performed for the purpose of quantifying the system 
capacity in units of g (the acceleration due to gravity), representing the total gravity load that can 
be applied before the system becomes unstable (collapses). For each model, gravity load was 
incrementally increased, iterating until the vertical capacity was reached (i.e., until a system 
instability occurred). 

5.3.1 Parameters 

Girder parameters that were varied in the ‘unanchored two-girder zero wind’ study were 
the FIB cross-section depth (in.) and span length (ft). All eight (8) standard FIB cross-sections 
were included, with depths ranging from 36 in. to 96 in. Material properties assumed for the 
prestressed concrete FIBs were fc′ = 8.5 ksi, unit weight = 150 pcf, and Poisson's ratio = 0.2. 
Using these values and equations provided in PCI (2010), the concrete elastic modulus was 
computed to be E = 5589 ksi. As noted in Section 4.3, in BDK75-977-33 (Consolazio et al., 
2013), the concrete strength was assumed to be fc′ = 6.5 ksi (with corresponding E = 4887 ksi). 
In the present study, however, the concrete strength was adjusted to fc′ = 8.5 ksi to better 
represent typical conditions in Florida bridge construction practice. 

Span length ranges for each FIB section considered in the unanchored two-girder zero 
wind parametric study were consistent with those previously discussed in Section 4.3, with 
maximum span lengths increased by 10 ft, per FDOT request. Additionally, span lengths were 
incremented at 5-ft intervals over the final chosen ranges (recall Table 4.1), as opposed to the 
10-ft increments used in BDK75-977-33 for the unanchored two-girder zero wind study. 

5.3.2 Updated system capacity of unanchored two-girder system in zero wind 

The relationships between system capacity (in terms of g) and span length, as previously 
determined in BDK75-977-33 (without inclusion of thermal sweep), and as determined in the 
present study (with inclusion of thermal sweep) for unanchored two-girder strut-braced systems 
in zero wind are compared in Figure 5.7. As expected, system capacity decreased due to the 
increase in lateral sweep. In both sets of data shown in Figure 5.7, system capacity is correlated 
with span length (L), but the FIB girder depth (D) has essentially negligible effect on capacity. 

In BDK75-977-33, the data shown in Figure 5.7a were used to construct the following 
baseline capacity (C0) equation of an unanchored strut-braced system of two girders in zero 
wind, reported as Eqn. (9.2) in Consolazio et al. (2013): 

48
0 39 0.5

L

C e


   (5.2)

where C0 is in g and L is the span length in ft (see Figure 5.8a). For the present study, using the 
updated baseline capacity data shown in Figure 5.7b (with the inclusion of thermal sweep), the 
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following updated baseline capacity (C0) equation of an unanchored two-girder strut-braced 
system in zero wind was constructed: 

42
0 47 0.5

L

C e


   (5.3)

where C0 is in g and L is the span length in ft. Forming Eqn. (5.3) involved establishing the 
curve that fit the data in Figure 5.7b with the minimum root mean square (RMS) error, then 
rounding and adjusting the fitting coefficients for 1) convenience of use and, 2) to minimize 
excess conservatism for span lengths exceeding approximately 140 ft (Figure 5.8b). 

 

(a) 

 

(b) 

Figure 5.7 System capacities of unanchored two-girder strut-braced FIB systems in zero wind: 
(a) Data from BDK75-977-33 (without inclusion of thermal sweep);  

(b) Data from present study (with inclusion of thermal sweep) 
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(a) 

 

(b) 

Figure 5.8 System capacity of an unanchored strut-braced two-girder FIB system 
in zero wind as predicted by C0 Equation: 

(a) Data from Figure 5.7a and Eqn. (9.2) from BDK75-977-33; 
(b) Data from Figure 5.7b and Eqn. (5.3) developed in present study 

5.4 Moment-resisting brace: limited scope parametric study 

In BDK75-977-33, the baseline capacity (C0) equation for an unanchored strut-braced 
two-girder system in zero wind was used to develop a set of final system capacity (C) equations, 
reported as Eqn. (9.22) and Eqn. (9.23) in Consolazio et al. (2013), for strut-braced and moment-
braced systems, respectively. Development of the final capacity equation was achieved by 
applying correction factors (developed from parametric studies) to the baseline (C0) equation. 
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The final system capacity equation for moment-resisting-braced systems, reported as Eqn. (9.23) 
in Consolazio et al. (2013) is repeated here for convenience of reference: 

 
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 (5.4)

where C is the system capacity in g, L is the span length in ft, D is the FIB cross-section depth in 
in., PU is the unshielded wind load in psf, P  is the average wind load per girder in psf, kbrace is 
the effective brace stiffness in kip-ft/rad, ω is determined from Table 5.1, wsw is the girder self-
weight in lbf/ft (Table 5.2), and C0 [which has been updated in the present study as Eqn. (5.3)] is 
in g. 

Table 5.1 Empirically-determined values of ω for different numbers of interior braces 

ni Brace locations ω 

0 End bracing 1.0 

1 Midpoint bracing 1.4 

2 Third-point bracing 1.6 

3 Quarter-point bracing 1.7 

Table 5.2 Self-weight (wsw) of each FIB cross-sectional shape (from FDOT, 2012b) 

Cross-section wsw (lbf/ft) 

36″ FIB  840 
48″ FIB  906 
54″ FIB  971 
63″ FIB 1037 
72″ FIB 1103 
78″ FIB 1146 
84″ FIB 1190 
96″ FIB 1278 

 
To account for the effects of wind pressure on system capacity, an average wind pressure 

per girder, P  [reported as Eqn. (9.7) in Consolazio et al., 2013] was defined: 

P
P

n
   (5.5)

where n is the number of girders in the bridge and P is the sum of the individual wind 

pressures on all girders. 
Recalibration of the additional correction factors in Eqn. (5.4) to account for an updated 

definition of sweep (i.e., with inclusion of thermal sweep) was outside the scope of the present 
study. However, a limited scope parametric study was conducted to compare system capacities 
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computed using full FEA bridge models to capacities computed using Eqn. (5.4) supplemented 
with the updated baseline capacity (C0) equation [i.e., Eqn. (5.3)]. 

5.4.1 Selection of parameters for limited scope moment-resisting brace parametric study 

System parameters varied in the moment-resisting brace parametric studies that were 
conducted in BDK75-977-33, and in the present study, were as follows: 

 FIB cross-section depth (in.) 
 Span length (ft) 
 Wind pressure (psf) 
 Effective brace stiffness (kip-ft/rad) 
 Number of interior brace points 
 Skew angle (deg.) 

In BDK75-977-33, seven (7) of the eight (8) standard FIB cross-sections were considered. (The 
36″ FIB was excluded because the cross-section is so shallow that use of moment-resisting 
braces is unwarranted and unfeasible). For each FIB, capacity analyses were performed for every 
combination of span length, wind pressure, effective brace stiffnesses, and number of interior 
brace points sampled from the values listed in Table 5.3. Only two-girder systems were 
considered because it was determined from the preliminary sensitivity studies that when 
moment-resisting braces are used, the two-girder system is always the least stable phase of 
construction. 

Table 5.3 Parameter values used in moment-resisting brace  
parametric study from BDK75-977-33 

Span length, L (ft) 

45″ FIB 54″ FIB 63″ FIB 72″ FIB 78″ FIB 84″ FIB 96″ FIB 

 95 110 120 135 145 155 170 

105 120 130 145 155 165 180 

115 130 140 155 165 175 190 

125 140 150 165 175 185 200 

135 150 160 175 185 195 205 

- - - 185 - - 220 

 
Unshielded wind 

pressure, PU (psf)  

Eff. brace stiffness, 
kbrace (kip-ft/rad)   Int. brace points, ni  Skew angle 

  0    15,000   0   0° 

 40   200,000   1   2° 

 80   400,000   2   5° 

120   600,000   3  10° 

160        25° 

        50° 

 



 

35 

Wind pressure loads were applied to the girders using the shielding pattern proposed in 
BDK75-977-33 (shown in Figure 5.5), and using the wind pressures listed in Table 5.3. Wind 
pressures specified in the table refer to the unshielded pressure load applied to the windward 
girder (G1). Hence, in accordance with the wind load model proposed in BDK75-977-33, the 
first shielded girder (G2) received no wind load and all subsequent girders (G3, G4, etc.), if any, 
received half of the listed pressure load. The maximum wind pressure of 160 psf was determined 
using the Structures Design Guidelines (FDOT, 2012d) by assuming a pressure coefficient of CP 
= 2.0, a basic wind speed of V = 150 mph, a bridge elevation of z = 75 ft, a gust effect factor of G 
= 0.85 and a load multiplier of γws = 1.4 (corresponding to the Strength III limit state). 

For the moment-resisting braces, the number of interior brace points varied from 0 (end 
bracing only) to 3 (end bracing plus quarter-point interior bracing), and girders in each system 
model were spaced at 6 ft on center. Furthermore, in moment-resisting braces, changes in girder 
spacing produce changes in the geometric configuration of the brace members, thus changing the 
effective stiffness of the braces. Such changes can significantly affect system capacity and must 
be considered. In moment-resisting brace parametric studies, the effects of changing girder 
spacing were accounted for by varying the effective brace stiffness parameter, even though the 
physical length of the reference brace remained a constant 6 ft. 

In the present project (BDV31-977-46), parameters for a limited scope parametric study 
were determined by selecting a reduced set of FIB cross-section depths, span lengths, and skew 
parameters from those used in the previous moment-resisting-brace parametric study (BDK75-
977-33). Final parameters selected for the limited scope parametric study are listed in Table 5.4 
(and can be compared to the complete list of parameter values used in BDK75-977-33, shown in 
Table 5.3). To cover a range of upper and lower bounding system capacities, 54” FIB, 78” FIB, 
and 96” FIB cross-sections were selected. Similarly, for each FIB cross-section depth, minimum 
span length, intermediate span length, and a maximum span length were selected. Skew angles of 
0° and 25° were selected to cover a wide range of common skew angles used in bridge design. 
Parametric values of the remaining parameters (i.e., unshielded wind pressure, effective brace 
stiffness, and  number of interior brace points) were the same as used in BDK75-977-33. In total, 
1,440 models were analyzed. 
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Table 5.4 Selected parameter values used in the present moment-resisting brace parametric study 

Span length, L (ft) 

54″ FIB 78″ FIB 96″ FIB 

110 145 170 

130 165 190 

150 185 220 

 
Unshielded wind 

pressure, PU (psf)  

Eff. brace stiffness, 
kbrace (kip-ft/rad)   Int. brace points, ni  Skew angle 

  0    15,000   0   0° 

 40   200,000   1   25° 

 80   400,000   2   

120   600,000   3   

160         

 

5.4.2 Updated system capacity of moment-resisting brace 

Results from the limited scope parametric study and corresponding predicted 
capacities (C) determined using Eqn. (5.3) and Eqn. (5.4) [i.e., Eqn. (9.23) from BDK75-977-33] 
are displayed in Figure 5.9. Results are sorted by descending capacity—and separated by FIB 
girder type and skew angle—to visualize the level of conservatism in predicted capacities. 
Results from BDK75-977-33 corresponding to the parameters selected for the present study (i.e., 
parameters listed in Table 5.4) are shown in Figure 5.9a, and compared with predicted system 
capacity (C) quantities using Eqn. (9.23) and Eqn. (9.2) from BDK75-977-33. Results from the 
present study are compared with predicted system capacities (C) calculated using Eqn. (5.3) and 
Eqn. (5.4) in Figure 5.9b. 

The level of conservatism in the final moment-resisting-braced system capacity (C) 
equation with an updated baseline (C0) equation is displayed in the form of a histogram in 
Figure 5.10. In BDK75-977-33, systems with capacities exceeding 10 g (i.e., extremely stable 
systems) were excluded from consideration in the development of the final moment-resisting-
braced system capacity prediction equation. Under the same criteria, predicted capacities for 
essentially all systems (99%) considered in the present limited scope parametric study (with an 
updated definition of sweep) were conservative. 
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(a) 

 

(b) 

Figure 5.9 System capacity of moment-resisting two-girder FIB system: 
(a) Partial data from BDK75-977-33 and predicted capacity from Eqn. (9.23) from BDK75-977-

33; (b) Updated FEA data developed in present study, and predicted capacity from Eqn. (5.3) 
(present study) and Eqn. (5.4) 

The moderate increase in conservatism evident in Figure 5.9b (i.e., a larger gap between 
parametric capacities and predicted capacities), compared with Figure 5.9a, is the result of two 
influences. First, the reduced capacities predicted by the baseline capacity (C0) Eqn. (5.3) 
(accounting for thermal sweep) propagate through Eqn. (5.4) to yield lower system capacity (C) 
values. This downward influence of C0 on computed C values is illustrated in Figure 5.11. 
Second, the parametric finite element data shown in Figure 5.9b are obtained from models that 
employ a concrete strength of fc′ = 8.5 ksi, rather than the fc′ = 6.5 ksi that was assumed in 
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BDK75-977-33. Due to the increase in concrete strength fc′, and corresponding increase in 
concrete modulus Ec, the capacities computed by finite element analysis increase (Figures 5.12 
and 5.13). Thus the combined effects of reduced C0 and increased Ec moderately increase the 
gap between empirically predicted capacity and finite element computed capacity. 

 

 

Figure 5.10 Absolute error of system capacity quantities predicted  
by Eqn. (5.4)  from BDK75-977-33 with updated C0 equation [Eqn. (5.3)] 

(Note: negative absolute error indicates conservative prediction of capacity) 

 

Figure 5.11 Comparison of predicted capacities 
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Figure 5.12 Comparison of selected parametric study data from BDK75-977-33 with  
updated parametric study data (thermal sweep included) 

 

Figure 5.13 Absolute difference of current to previous parametric study system capacity 
quantities (Note: positive absolute difference indicates increased system capacity  

from previous study) 

  

Case identification number

Sy
st

em
 c

ap
ac

it
y 

(g
)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
0

2

4

6

8

10

12

14

16

18

20

54" FIB 0° skew

78" FIB 0° skew

96" FIB 0° skew

54" FIB 25° skew

78" FIB 25° skew

96" FIB 25° skew

Selected parametric study results from BDK75-977-33
Selected parametric study results (thermal sweep included)

Absolute difference in system capacity (g)

R
el

at
iv

e 
fr

eq
ue

nc
y

-1.0 -0.8 -0.5 -0.2 0.0 0.2 0.5 0.8 1.0 1.2 1.5 1.8 2.0 2.2 2.5 2.8 3.0 3.2 3.5 3.8 4.0
0

2%

4%

6%

8%

10%

12%

14%

16%
0.0 g < C  3.0 g
3.0 g < C < 10.0 g or C = 0 g



 

40 

CHAPTER 6 
PROCEDURES DEVELOPMENT FOR CONSTRUCTION LOAD 

DISTRIBUTION FACTOR EQUATIONS 

6.1 Introduction 

In the development of distribution factors for girder end shears and moments that are 
induced by bridge construction loads, the deck placement (concrete application and finishing) 
was the construction stage and process considered. Components of the bridge construction loads 
considered were as follows: 

 Concrete deck: Throughout the deck placement and finishing process, the wet (plastic) 
concrete has negligible stiffness. Consequently, a non-composite girder system must support 
these construction loads. However, in the final bridge condition, the bridge deck works 
together with the girders as a composite system to resist and distribute loads to the supporting 
girders. Since the wet (non-structural) concrete load is incrementally applied to bridges in the 
longitudinal direction, this load is treated as a variable length load in the finite element 
analyses. Partial application of concrete deck loads to the girder system will be further 
explained later in this report. 

 Stay-in-place formwork: Stay-in-place (SIP) formwork systems support intra-girder loads 
(wet concrete) that span transversely between girder top flanges (Figure 6.1). Stay-in-place 
forms consist of corrugated metal panels that are attached to the tips of the top flange of 
adjacent girders. The connection between the SIP forms and the girder flange is considered to 
be incapable of transmitting moments, therefore the SIP forms are essentially treated as being 
‘simply supported’ on the girder flange tips.  

 

Figure 6.1 Stay-in-place formwork (section view) 

 Overhang formwork: It is typical for the deck of a bridge to extend past the exterior (fascia) 
girders, thereby producing cantilevered overhangs (Figure 6.2). During construction, 
overhang brackets (Figure 6.3) are used to temporarily support the cantilever portion of the 
wet deck slab that extends beyond exterior girders. These temporary structural bracket 
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systems support the overhang formwork, wet concrete, construction walkway, workers and 
concrete finishing machine. In BDK75-977-70, a survey of representative literature from 
overhang bracket manufacturers was conducted to quantify representative cross-sectional 
properties and longitudinal spacing requirements. Most commercially available formwork 
systems consist of timber joists and sheathing supported on steel bridge overhang brackets 
(Figure 6.4). It is important to note that all of the gravity loads supported by the overhang 
brackets are eccentric relative to the exterior girders, and as such apply torque loads to the 
exterior girders in the overall cross-sectional system. 

 

Figure 6.2 Temporary support brackets used to support deck overhangs during construction  

 

Figure 6.3 Cantilever overhang supported by overhang brackets 
(Photo credit: Clifton and Bayrak, 2008) 

Overhang
supported by 

overhang brackets
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Figure 6.4 Details of overhang formwork support brackets and loads 

 Finishing machine: Bridge deck finishing machines (Figure 6.5) spread, compact, and finish 
the freshly placed wet concrete deck surface. The finishing machine is an open steel frame 
that is supported at the extremities of the bridge width on the overhang brackets described 
above. Drive wheels (commonly referred to as bogies) move the paver longitudinally along 
the length of the bridge and are eccentrically supported by screed rails (Figure 6.4) on each 
side of the bridge. A suspended paving carriage with augers, drums, and floats finishes the 
concrete surface as it moves transversely from side to side across the width of the bridge 
(perpendicular to the longitudinal movement of the finishing machine along the length of the 
bridge). Concrete is typically placed just ahead of the travelling finishing machine using 
separate equipment, such as a pump. 

 Live loads: Live loads that are present during the deck finishing process consist of workers, 
temporary materials, and supplementary construction equipment. For modeling purposes, 
these loads are treated as either uniform pressure loads, or as line loads, as will be discussed 
in greater detail later. 
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Figure 6.5 Typical bridge deck finishing machine in operation  
(Photo credit: Gomaco) 

6.2 Modeling multi-girder bridge systems during construction 

Numerical modeling and analysis techniques developed in FDOT study BDK75-977-70 
(Consolazio and Edwards, 2014), were extended in the present study for purposes of quantifying 
girder forces induced by construction loads. Each numerical finite element model was suitable 
for analyzing construction loads acting on systems of precast concrete girders (Florida-I Beams) 
braced together (including the influence of brace configuration, bearing pad stiffness, etc.). The 
modeling techniques allow for consideration of different Florida-I Beam cross-sections, span 
lengths, girder spacings, deck overhang widths, skew angles, number of girders, number of 
braces, and bracing configurations (K-brace and X-brace). Additionally, partial coverage of wet 
(non-structural) concrete load and variable positioning of deck finishing machine loads were 
considered. In all cases, structural element forces were determined using large-displacement (i.e., 
geometrically nonlinear) analyses, in which static loads were applied to the models in 
incremental steps, taking into account the deformed state of the structure at each step.  

Construction loads applied beyond the lateral extents of an exterior girder are structurally 
supported during construction by overhang brackets. Specifically, the finishing machine, 
formwork, overhang wet concrete, and construction worker live loads are typical loads supported 
by overhangs. To define the lateral eccentricity of the overhang construction loads, two offset 
parameters were established (in BDK75-977-70). To be consistent with the FDOT Instructions 
for Design Standard No. 20010: Prestressed Florida-I Beams (FDOT, 2014b), the concrete 
finishing machine was offset 2.5 in. from the overhang edge (Figure 6.6). In the FDOT Concrete 
I-girder Beam Stability Program, in addition to providing calculations for determining bracing 
adequacy and girder stability, several recommended values for the overhang geometry are 
specified, including a 2-ft worker platform width. Therefore, for all the numerical studies 
conducted herein, the worker platform was assumed to extend 2 ft beyond the finishing machine 
supports (Figure 6.6).  
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In the finite element bridge models, components of the overhang brackets were modeled 
with beam elements, using representative cross-sectional properties obtained from a survey of 
overhang bracket manufacturers. To represent the offset eccentricities between the girder 
centroid and bracket connection points, the deformable overhang bracket elements were 
connected to girder warping beam elements using rigid links (Figure 6.7). To model interaction 
between the overhang bracket and the girder bottom flange, two co-located—but separate—
nodes were used: one at the bottom vertex of the metal overhang bracket, and a second at the end 
of the rigid link representing the surface of the girder bottom flange. At this location, the 
overhang bracket bears against (i.e., is in compressive contact with) the girder bottom flange. To 
model this behavior structurally, a constraint condition was defined such that the lateral 
(X-direction) translations of the two co-located nodes were constrained to match, while 
permitting independent movements (relative slip) in the vertical direction. 

Overhang bracket nodes were positioned (Figure 6.7) to define: the three corners of the 
triangular system; and all locations of load discontinuities (i.e., deck overhang edge) and load 
application points (i.e., finishing machine and worker line load application points). The worker 
line load was conservatively applied to the center of the worker platform width. Thus, the load 
application of the worker line load was laterally offset in the X-direction 12 in. from the assumed 
finishing machine application point and 14.5 in. from the deck overhang edge (Figure 6.7). 

 

Figure 6.6 Overhang bracket components and geometry 
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Figure 6.7 Details of overhang bracket model 

Combining each of the previously mentioned modeling components, an overall 
illustration of a typical FIB system model is presented in Figure 6.8. Based on a review of 
literature obtained from typical overhang bracket manufacturers, brackets were commonly found 
to be spaced at between 4 ft and 6 ft on-center longitudinally along the span length of a bridge. 
Therefore, an average longitudinal spacing of 5 ft was used for all brackets (Figure 6.9). 

Shown in Figure 6.8 and Figure 6.9 are rigid vertical elements (links)—extending from 
girder centroid to girder top surface—which were included in the model for application of 
construction loads on each girder. These rigid elements account for the vertical eccentricity 
between the girder centroid and the girder top surface (where loads were applied). It was 
determined that brace forces induced by construction loads were not sensitive to changes in the 
longitudinal spacing of the rigid vertical elements, consequently the rigid links were given an 
arbitrary longitudinal spacing of 1 ft in the span direction. 

 

Figure 6.8 Cross-sectional view of overall braced girder system model 
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Figure 6.9 Isometric view of braced girder system model 

6.3 Application of construction loads 

During bridge construction, self-weight (i.e., gravity) loads from girders, braces, 
formwork, and overhang brackets act in combination with a variety of superimposed loads. A 
key load among the superimposed loads is the application of concrete finishing machine weight. 
Finishing machines are supported near the extremities of the bridge width by several wheels. The 
common Terex Bid-Well 4800 machine has a total wheel base of approximately 8 ft in the 
longitudinal (bridge span) direction. Since this wheel base is small relative to the typical span 
lengths of prestressed girder bridges, the finishing machine wheel reaction forces were idealized 
as single concentrated loads (one load on each side of the bridge, equal to half the total machine 
weight). Construction loading conditions specified in the Structures Design Guidelines (FDOT, 
2016) stipulate that, in the absence of manufacturer’s specifications, the finishing machine 
weight shall vary as a function of bridge width, as indicated in Table 6.1. For the present study, 
the FDOT minimum bridge width specification was reduced from 26 ft to 0 ft, to enable 
inclusion of bridge configurations narrower than 26 ft, and ‘bridge width’ was defined to be the 
completed (finished) bridge deck width (i.e., from edge to edge of the deck, excluding temporary 
overhang formwork). 

Table 6.1 Varying finishing machine load  
(based on FDOT Structures Design Guidelines, 2016) 

Bridge Width, W (ft) Total Weight of finishing machine (kips) 
  0  <  W  ≤    32 7 

32  <  W  ≤    56 11 

56  <  W  ≤    80 13 

80  <  W  ≤  120 16 

Z
XY

Overhang
bracket

elements

Rigid vertical elements 
for superimposed load

application

Bracing
elements
(K-brace)

Bearing pad
stiffness springs
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As concrete placement and finishing of the bridge deck progresses, concentrated live 

loads (e.g., workers standing on the overhang platforms) will be applied at the lateral extremities 
of a bridge. To account for such loads, the AASHTO Guide Design Specifications for Bridge 
Temporary Works (2008) recommends that a ‘worker line load’ of 75 lb/ft (un-factored) be 
applied along the outside edge of each deck overhang. The line load is stipulated to be applied as 
a moving load (i.e., co-located with the finishing machine position) but with a fixed longitudinal 
length of 20 ft, so as to not introduce excessive conservatism.  For numerical modeling purposes, 
when the finishing machine was either at the start or the end of a bridge, the worker line load was 
applied over the first or last 20 ft of the structure, respectively. For all other cases, where the 
finishing machine was positioned at an interior brace point, the 20-ft worker line load was 
longitudinally extended 10 ft ahead of and behind the finishing machine.  

Additionally, in accordance with AASHTO design specifications, an un-factored 20-psf 
construction live load was also applied to each numerical bridge model analyzed. To be 
consistent with FDOT guidelines, the 20-psf live load was extended over the entire bridge width, 
and was extended 50 ft in longitudinal direction, but centered on the finishing machine location 
(Structures Design Guidelines, FDOT, 2016). For load cases where the finishing machine was 
located at either the start or the end of a bridge (i.e., within 25 ft of either end), the construction 
live load was applied over the first or last 50 ft of the bridge length. 

In physical bridge construction, wet concrete pressure load is applied to a bridge (by way 
of stay-in-place forms) over incrementally increasing lengths, as deck placement progresses. The 
wet concrete is typically placed just ahead of the moving finishing machine using a pump, 
therefore, in a vast majority of paving situations, the location of the finishing machine and the 
end of the concrete coverage will coincide. For purposes of numerical modeling, the loading 
conditions considered in this study included placement of concrete deck loading over the full 
length of bridge as well as partial lengths of bridge. For partial coverage cases, the position of 
the finishing machine was taken to coincide with the location of the furthest placed concrete.  

6.3.1 Construction load groups considered 

Construction loads were separated into two groups (Table 6.2) so that distribution factors 
could be computed separately for each group. The key distinction between the two load groups 
was that loads included in Load Group 1 were considered to be live loads, whereas loads in Load 
Group 2 were considered to be dead loads. To ensure that maximum (i.e., controlling) 
distribution factors were quantified in the construction load parametric study, multiple load cases 
for each load group were analyzed. Construction Load Group 1 load cases are shown in 
Figures 6.11-6.14. Similarly, Construction Load Group 2 loads were analyzed with multiple load 
cases where the wet concrete deck location was incrementally advanced in the longitudinal span 
direction (stopping at each brace point), as illustrated in Figures 6.16-6.19. 
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Table 6.2 Summary of construction load groups in parametric studies 

Construction Load Group 1 Load type Load Reference 
Live load Temporary 20 psf  (for 50 ft, longitudinally) I 

Worker line load Temporary 75 lb/ft  (for 20 ft, longitudinally) I 

Finishing machine Temporary Varies with bridge width  (Table 6.1) I 
I:  per FDOT Structures Design Guidelines (2016) 

    

Construction Load Group 2 Load type Load Reference 
Wet concrete deck Permanent 106.25 psf  (8.5” thick, 150 pcf) I 

Wet concrete build-up Permanent 50 lb/ft I 

Stay-in-place forms Permanent 20 psf I 

Overhang formwork Temporary 10 psf II 

Overhang brackets Temporary Self-weight  
I:   per FDOT Structures Design Guidelines (2016) 
II:  per FDOT recommendations 

Live load

Worker 
line load

Finishing
machine

 

Figure 6.10 Cross-sectional summary of construction Load Group 1 (LG1) loads 

Load Case 3: 
Finishing machine

 at end-span

Load Case 2: 
Finishing machine 

at midspan

Load Case 1: 
Finishing machine 

at end-span

Finish machine
load on both sides

Construction live load 
tributary area

50 ft (typ.)

Worker line load

20 ft (typ.)

 

Figure 6.11 Construction Load Group 1 as a function of finishing machine location 
(Bridge with only end-span braces; no interior braces) 
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Load Case 3: 
Finishing machine

 at end-span

Load Case 2: 
Finishing machine 

at midspan

Load Case 1: 
Finishing machine 

at end-span  

Figure 6.12 Construction Load Group 1 as a function of finishing machine location 
(Bridge with end-span and midspan bracing) 

Load Case 1: 
Finishing machine 

at end-span

Load Case 2: 
Finishing machine 

at 1/3-span

Load Case 3: 
Finishing machine 

at midspan

Load Case 4: 
Finishing machine 

at 2/3-span

Load Case 5: 
Finishing machine 

at end-span  

Figure 6.13 Construction Load Group 1 as a function of finishing machine location 
(Bridges with third-point bracing) 

Load Case 1: 
Finishing machine 

at end-span

Load Case 2: 
Finishing machine 

at 1/4-span

Load Case 3: 
Finishing machine 

at midspan

Load Case 4: 
Finishing machine 

at 3/4-span

Load Case 5: 
Finishing machine 

at end-span  

Figure 6.14 Construction Load Group 1 as a function of finishing machine location 
(Bridges with quarter-point bracing) 
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Figure 6.15 Cross-sectional summary of construction Load Group 2 (LG2) loads 

K-brace

Wet concrete load

Load Case 3: 
Full-span deck

Load Case 2: 
Midspan loaded deck

Load Case 1: 
No deck load

Overhang bracket

Overhang formwork load

Concrete build-up loadSIP form load

 

Figure 6.16 Construction Load Group 2 with incremental deck load 
(Bridge with only end-span braces; no interior braces) 

Load Case 3: 
Full-span deck

Load Case 2: 
Midspan loaded deck

Load Case 1: 
No deck load  

Figure 6.17 Construction Load Group 2 with incremental deck load 
(Bridge with end-span and midspan bracing) 
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Load Case 1: 
No deck load

Load Case 4: 
Full-span deck

Load Case 2: 
1/3-span deck

Load Case 3: 
2/3-span deck  

Figure 6.18 Construction Load Group 2 with incremental deck load 
(Bridges with third-point bracing) 

Load Case 1: 
No deck load

Load Case 2: 
1/4-span deck

Load Case 3: 
1/2-span deck

Load Case 4: 
3/4-span deck

Load Case 5: 
Full-span deck  

Figure 6.19 Construction Load Group 2 with incremental deck load 
(Bridges with quarter-point bracing) 

6.3.2 Application of construction loads 

Construction loads that are applied between adjacent girders (e.g., on the stay-in-place 
forms) produce vertical reaction forces that act on the tips of the girder top flanges. Since all 
Florida-I Beams have a top flange width of 48 in., the lateral eccentricity between the girder 
centroid and the formwork reaction force (Figure 6.20) is 24 inches (half of the girder top flange 
width). For numerical modeling and analysis purposes, each eccentric reaction force of this type 
was converted into statically equivalent forces and moments (Figure 6.20) which were then 
applied along the centerlines of the girders.  

Consequently, all intra-girder distributed pressure loads that were applied over the width 
of the stay-in-place formwork were converted into equivalent nodal forces and moments. Other 
types of construction loads, such as the overhang loads (overhang formwork, worker line load, 
etc.), were applied directly to nodes in the structural model based on the appropriate tributary 
areas (Figure 6.21). 
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Figure 6.20 Eccentric reaction forces from loads applied to SIP forms, and statically equivalent 
nodal force and moment applied to top of girder 

 

Figure 6.21 All construction loads (LG1 and LG2) converted to equivalent nodal loads 
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CHAPTER 7 
DEVELOPMENT OF CONSTRUCTION LOAD  

DISTRIBUTION FACTOR EQUATIONS 

7.1 Construction load distribution factor parametric study 

7.1.1 Scope 

To develop empirical construction load distribution factor (DF) equations, a large-scale 
construction load distribution factor parametric study was conducted. Three-dimensional (3-D) 
structural analyses were conducted (using automation scripts) to generate and analyze structural 
analysis models using the ADINA (2016) finite element code. The parametric study was 
conducted to quantify girder end shear forces and maximum girder moments. Since several 
geometric parameters influence the magnitude and distribution of maximum girder moments and 
girder end shear forces caused by construction loads, it was necessary to conduct a parametric 
study covering a wide range of possible parameters: 

 Construction Load Group (LG1 or LG2) 
 FIB cross-section depth (in.) 
 Span length (ft) 
 Skew angle (deg.) 
 Number of brace points (end-span only, 1/2 point, 1/3 point, 1/4 point) 
 Brace type (K-brace or X-brace) 
 X-brace material type (steel or timber) 
 Deck overhang width (in.) 
 Girder spacing (ft) 
 Number of girders 
 Finishing machine location or non-structural deck dead load location 

Specific parameter values that were included in the parametric study—which involved 290,304 
separate analyses—are listed in Table 7.1. 

Span lengths were chosen to represent a shorter-than-typical length, a practical minimum, 
an intermediate length, and a practical maximum length (per design FDOT aids cited in 
Consolazio and Edwards, 2014). Additional geometric parameters, such as skew angle, deck 
overhang width, and girder spacing, were selected to cover a range of typical bridge 
configurations, as determined in Consolazio and Edwards (2014) based on a survey of typical 
Florida bridges and FDOT design recommendations. 
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Table 7.1 Parameter values used in the distribution factor parametric study 

Span length, L (ft) 

45″ FIB 54″ FIB 63″ FIB 72″ FIB 78″ FIB 84″ FIB 96″ FIB 

40 50 60 60 70 80 80 

90 110 120 130 140 160 170 

110 130 140 150 160 180 190 

130 150 160 170 180 200 210 

 

Skew angle 

Intermediate-span 
brace points, ni 

Deck overhang  
width, (in.) 

Girder  
spacing, (ft) Girders, ng 

0° 0 25 6 3 

15° 1 48 9 5 

30° 2 72 12 9 

45° 3    

 
In regard to the choice of cross-brace (X-brace) construction material—i.e., timber or 

steel—that was implemented in the numerical bridge models, the original intent was to identify 
whichever material produced the more conservative results, and then include only that material 
in the final parametric study. However, after conducting a preliminary sensitivity study, it was 
determined that timber X-braces produced larger exterior girder end shear forces and moments in 
some cases, while steel X-braces produced larger interior girder end shear forces and moments. 
Consequently, separate analyses of both timber X-brace configurations and steel X-brace 
configurations were modeled for each bridge included in the parametric study. 

7.1.2 Special cases 

As a consequence of including timber X-braces in the parametric study, some Load 
Group 2 (LG2) models were found—through analysis—to be unstable. However, all such cases 
were found to correspond to long span bridges with end-span-only timber X-bracing. Using 
timber X-bracing only at the ends of a bridge is not typical practice and does not meet standard 
bracing design requirements. Consequently, each model that was determined to be unstable in 
this manner was removed from the distribution factor parametric study. 

7.2 Definition of distribution factors 

After analyzing all parametric models using ADINA (2016), girder end shear forces and 
maximum girder moments were quantified and processed into distribution factors, which were 
defined as: 

GIRDER
V

GIRDER

V
DF

V



 (7.1)

GIRDER
M

GIRDER

M
DF

M



 (7.2)
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where, DFV is the girder end shear force distribution factor, VGIRDER is the girder end shear force, 

GIRDERV  is the sum of the girder end shear forces at the same end of the bridge system, DFM is 

the maximum girder moment distribution factor, MGIRDER is the maximum girder moment (along 

the span length), and GIRDERM  is the sum of the maximum girder moments in the entire 

system. Note that based on this definition, two (2) girder end shear forces (and subsequent end 
shear force distribution factors) and one (1) maximum girder moment (and subsequent maximum 
girder moment distribution factor) were quantified for every girder in every bridge model 
analyzed in the parametric study. 

Due to the eccentric nature of most construction loads—where loads such as the finishing 
machine load are applied to overhang formwork and are therefore applied indirectly to exterior 
girders—distribution factors were further separated into exterior girder factors and interior girder 
factors. In total, the following eight (8) distribution factors for Load Groups 1 and 2 were 
defined: 
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where, DFV EXT LG1 is the end shear force distribution factor for an exterior girder with 
construction Load Group 1 loads applied, VEXT LG1 is the end shear force for an exterior girder 

with LG1 loads applied, and 1GIRDER LGV  is the sum of the girder end shear forces at the same 
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end of the bridge system. Similarly, for the remaining distribution factors, the subscripts EXT and 
INT are used to distinguish between exterior and interior girders, respectively, while subscripts LG1 
and LG2 are used to distinguish between the application of Load Group 1 and Load Group 2 loads, 
respectively. 

Distribution factors were computed only for superimposed construction loads, not self-
weight. To quantify distribution factors due only to superimposed construction loads, moments 
and end shear forces produced only by gravity (i.e., moments and end shear forces due to girder 
self-weight and brace self-weight alone) were subtracted from moments and end shear forces 
produced by the combined effects of gravity and superimposed construction loads. 

7.2.1 Distribution factor sensitivities 

Due to the large number of parameters considered in the parametric study (11 in total), 
supplementary limited-scope sensitivity studies were conducted prior to the development of 
empirical distribution factor equations. These additional studies were used to quantify the 
sensitivity of computed distribution factors to variations of a single parameter (while all 
remaining parameters were kept constant). Additionally, the sensitivity studies were used to 
determine if any of the 11 parameters could be omitted from the final empirical distribution 
factor development process. 

7.2.2 Illustrative examples 

After conducting several limited-scope sensitivity studies, it was determined that 
distribution factors were most sensitive to geometric parameters that influence the overall bridge 
geometry. For example, an increase in the number of girders was found to decrease certain 
distribution factor quantities, as shown in Figure 7.1. However, other parameters were found to 
have little or no influence on distribution factors. For example, girder depth was determined to 
be minimally influential, as shown in Figure 7.2. 

 

Figure 7.1 DF sensitivity to number of girders 
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Figure 7.2 DF sensitivity to girder depth 

7.2.3 Selection of culled data 

As previously noted, two (2) separate girder end shear forces (and subsequent end shear 
force distribution factors) and one (1) maximum girder moment (and subsequent maximum 
girder moment distribution factor) were quantified for every girder in every model analyzed in 
the parametric study. However, considering the intended purpose of the parametric study—to 
provide the designing engineer with a method for quantifying maximum interior and exterior 
girder end shear forces and moments in a construction-stage structural system for both loading 
conditions—some distribution factors quantified in the parametric study were non-critical. In 
conducting the parametric study, multiple models were analyzed with all parameters being 
identical except for the finishing machine location or deck placement location (as multiple 
models were used to investigate girder end shear forces and moments for different stages of the 
entire construction-phase of the bridge). Therefore, it was not of interest to use distribution 
factors associated with non-critical construction stages in the development of empirical 
distribution factor equations.  

For example, for cases where LG1 loads (including the finishing machine) were applied 
near one end of the bridge system, the girder end shear forces at the other (far) end of the bridge 
were relatively low, compared to girder end shear forces near the applied load. Therefore, 
including distribution factors associated with low (non-critical) girder end shear forces in the 
development of empirical distribution factor equations would not produce desired distribution 
factor prediction equations (or subsequent maximum girder end shear force predictions). As a 
result, only distribution factor quantities associated with maximum interior and exterior girder 
end shear forces and moments were used to develop empirical DF equations, thus culling cases 
from the complete large-scale parametric-study data to produce a ‘selected’ or ‘reduced volume’ 
data set. 
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7.2.4 Key parameters exhibiting sensitivity 

Based on results from the sensitivity studies, it was determined that empirical DF 
equations, for both LG1 and LG2, would be developed considering the following parameters: 

 
 Number of girders 
 Span length (ft) 
 Deck overhang width (ft) 
 Girder spacing (ft) 
 Skew angle (deg.) 

Furthermore, from the perspective of static equilibrium, deck overhang width and girder spacing 
have approximately inverse influences on distribution factors. For this reason, these two 
parameters were combined into a single dimensionless ratio (ft/ft), reducing the total number of 
independent parameters considered in the empirical fitting process to four (4). 

Based on the reduction of parameters considered in the empirical fitting process (from 11 
to 4), distribution factor data were correspondingly culled. Specifically, distribution factor data 
were reduced in volume by grouping together all models that had matching values of: number of 
girders, span length, deck overhang width, girder spacing, and skew angle. For each such group 
of analyzed models, the values DFV EXT, DFV INT, DFM EXT, and DFM INT were quantified. These 
four distribution factors were defined as the distribution factors associated with the largest (i.e., 
most critical) interior or exterior girder end shear force or maximum moment for that group of 
analyzed models. This grouping process further culled the distribution factor data such that there 
were 1,836 data values for each distribution factor and for each Load Group 
(3 girder number configurations 17 span lengths 3 deck overhang widths 3 girder spacing dimensions 4 skew angles = 1836). 

7.3 Formation of baseline empirical distribution factor equations 

From the culled distribution factor data, empirical fits for LG1 and LG2 were developed, 
using a root mean square (RMS) error minimization scheme, where the generalized functional 
form of all eight (8) distribution factor (DF) equations was defined as: 

     
7
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ALL DF EQNS
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  
 

(7.11)

where DF is the distribution factor, N is the number of girders, L is the span length in ft, OH is 
the deck overhang width in ft, S is the girder center-to-center spacing in ft, θ is the skew angle in 
deg., and a1 through a9 are fitting constants. Eqn. (7.11) is the most general form used to generate 
empirical DF fits. However, based on sensitivity study results, the optional skew angle term was 
later removed from a majority (but not all) of the DF prediction equations. For conditions where 
DF was found to be insensitive to skew, the number of critical distribution factor data points 
used in the fitting process was further culled to 459. 

In order to compute values of the best fit parameters a1 through a9 in an optimal manner, 
an error function minimization process was used. The root mean square (RMS) error function 
was defined as the square root of the sum of the squares of the distribution factor prediction 
errors—differences between reduced distribution factor data and empirical distribution factor 
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predictions—accumulated across the entire reduced data set and divided by the number of cases 
considered. Minimizing the RMS error function with respect to the fitting parameters a1 through 
a9 produced preliminary empirical distribution factor prediction equations. 

7.4 Modifications to achieve desired level of prediction error 

As a consequence of developing fits with an RMS error minimization scheme, the 
empirically predicted distribution factors were conservative in 50% of cases when compared to 
distribution factors computed from corresponding finite element analyses. Moreover, the 
empirically predicted DF values themselves are less important than the values of shear (V) and 
moment (M) that are produced by application of the DF equations in design. The distribution 
factors developed here were intended to be used in conjunction with static analyses (i.e., a simple 
one-dimensional beam models) to predict interior and exterior girder end shear forces and 
moments. Therefore, an automation script was developed to conduct a static (beam) analysis for 
every case (geometric configuration) analyzed in the parametric study. Using the empirically-fit 
distribution factor equations, interior and exterior girder end shear force predictions and 
maximum interior and exterior girder moment predictions were compared to the corresponding 
finite element results to determine the level of conservatism produced by application of the 
predicted DF quantities. A normalized prediction error was defined as: 
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where EN is the normalized error, DF is the empirically predicted distribution factor, [V|M] 
indicates shear (V) or moment (M), [V|M]STATIC is the maximum end shear force or moment 
quantified using a static (beam) analysis, and [V|M]FEA is the girder end shear force or maximum 
girder moment quantified from finite element analysis. Using the empirically developed 
DF equation in conjunction with a static analysis, a final interior or exterior girder end shear 
force or maximum moment prediction, [V|M]PREDICTION, was quantified and compared with the 
end shear force or moment quantified using a finite element analysis. Per this definition, 
normalized error values greater than or equal to 1.0 indicate a conservative prediction of [V|M], 
and values less than 1.0 indicate an unconservative prediction of [V|M]. 

When girder end shear forces and moments computed using empirically predicted DF 
values and simplified beam analysis were compared to shears and moments computed from 
three-dimensional FEA, it was found that final girder [V|M]PREDICTION values exhibited 
conservatism in excess of the 50% conservatism that was built into the empirical DF equations. 
An illustration of this additional conservatism in the prediction of exterior girder end shear forces 
with LG1 loads applied is shown in Figure 7.3. The level of excess conservatism varied between 
each of the remaining seven (7) DF equations, when used in conjunction with a static beam 
analysis. A supplementary ‘exceedance factor’ was thus introduced in the final distribution factor 
equation to permit desired levels of exceedance (i.e., a desired level of conservatism) to be 
achieved. The exceedance parameter was introduced by applying a shift to the normalized error 
in the following manner: 
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where C is a constant used to shift the normalized error to a desired exceedance level, and β is 
the defined exceedance factor. As shown above, β was used to relate the desired shift of the 
normalized error to the final form of the DF equation. Additionally, the exceedance factor 
provided the ability to achieve specific levels of conservatism, without necessitating adjustments 
to any of the empirically fit constants, a1 through a9, in the DF equations. 

To provide future flexibility in the implementation of the equations developed from this 
study, β values were quantified at four (4) different levels of exceedance for each distribution 
factor DF expression. Each β value was quantified in an iterative manner to achieve a desired 
exceedance level of predicted girder end shear force or maximum girder moment. Exceedance 
levels of 50% (mean [V|M] prediction error of zero), 84%, 95%, and 98% were identified as 
being of future value to the FDOT. In the 95% case, [V|M] predictions computed using the 
empirically predicted DF values and simplified beam analysis would be conservative (relative to 
FEA prediction) in 95% of cases. The levels of 84% and 98% corresponded to exceedance 
thresholds at 1-standard deviation above ‘zero mean error’ (i.e., 50% exceedance), and 2-
standard deviations above zero mean error, respectively. To illustrate the influence of 
establishing β at different levels of exceedance, normalized errors for exterior girder end shear 
force predictions with LG1 loads applied are shown in Figure 7.4 – Figure 7.7. 

 

Figure 7.3 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction with 
a static beam analysis, without introduction of β (Note: an exceedance of 57% indicates a 

moderate level of implicit conservatism relative to the ‘zero mean error’ condition, i.e., 50% 
exceedance) 
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Figure 7.4 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction with 
a static beam analysis, shifted with β to a 50% exceedance level 

 

Figure 7.5 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction with 
a static beam analysis, shifted with β to an 84% exceedance level 
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Figure 7.6 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction with 
a static beam analysis, shifted with β to a 95% exceedance level 

 

Figure 7.7 Shear (V) prediction error for the culled data set using DFV EXT LG1 in conjunction with 
a static beam analysis, shifted with β to a 98% exceedance level 
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7.5 Final distribution factor equations for design 

The final (general) form of the empirically developed distribution factor equations was 
defined as: 

       
7
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a a aOH
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       
     

(7.17)

where DF is the predicted distribution factor, N is the number of girders in the bridge cross-
section, L is the span length in ft, OH is the deck overhang width in ft, S is the girder center-to-
center spacing in ft, θ is the skew angle in deg., a1 through a9 are empirical fit constants listed in 
Table 7.2, and β is exceedance factor selected to achieve a desired level of exceedance (i.e., 
conservatism) listed in Table 7.3. (Detailed summaries and illustrations of normalized error for 
each β value are provided in Appendix D for all cases: interior and exterior girder end shear 
forces and moments). 

Table 7.2 Constants for distribution factors (DF) calculation 

DF equation a1 a2 a3 a4 a5 a6 a7 a8 a9 

DFV EXT LG1 -0.26 0.60 -0.41 0.03 -0.03 1.76  0.27 0.10 0.02 

DFV INT LG1 -0.90 0.13 -0.11 0.01 0.02 4.80  0.02 0.03 0.01 

DFM EXT LG1 -0.23 0.47 -0.33 2.51 -0.09 27.00 0.09 0 0 

DFM INT LG1  0.06 1.94 -1.22 0.53 0.17 8.63 -0.03 0 0 

DFV EXT LG2 -0.01 0.78 -0.93 0.91 0.06 0.81 0.36 0 0 

DFV INT LG2 0.03 0.89 -1.08 1.04 0.04 10.16 -0.16 0 0 

DFM EXT LG2 -0.06 1.66 -0.77 2.29 -0.01 24.58 0.17 0 0 

DFM INT LG2 0.01 0.72 -1.09 18.19 0.01 14.01 -0.16 0 0 

Table 7.3 Distribution factor (DF) exceedance values 

β constant 50% exceedance 84% exceedance 95% exceedance 98% exceedance 

DFV EXT LG1 -0.01 0.12 0.31 0.53 

DFV INT LG1 -0.04 0.14 0.29 0.42 

DFM EXT LG1 -0.04 0.01 0.08 0.14 

DFM INT LG1 -0.03 0.06 0.12 0.20 

DFV EXT LG2 -0.09 0.03 0.12 0.15 

DFV INT LG2 -0.05 0.05 0.17 0.27 

DFM EXT LG2 -0.01 0.06 0.15 0.17 

DFM INT LG2 -0.01 0.06 0.11 0.15 
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7.5.1 Application of proposed method 

To illustrate the application of the proposed method for quantifying interior and exterior 
girder end shear forces and moments, an example involving the calculation of exterior girder end 
shear, for construction load group LG1, is presented. After collapsing all construction loads 
(point, line, and pressure) into an equivalent one-dimensional beam loading diagram 
(Figure 7.8), a simple static beam analysis is performed to compute the maximum girder end 
shear. The exterior girder end shear force for construction load group LG1 is then determined as: 

1 1 1E X T L G S T A T IC L G V E X T L GV V D F  (7.18)

where VEXT LG1 is the empirically predicted exterior girder end shear force, VSTATIC LG1 is the 
maximum end shear force quantified from the static beam analysis, and DFV EXT LG1 is the LG1 
exterior girder end shear force distribution factor computed using Eqn. (7.17), Table 7.2, and 
Table 7.3. (As noted previously, comprehensive illustrations of the approach, for interior and 
exterior girder end shear forces and moments, are shown in Appendix D). 

50 ft
20 ft

Equivalent worker line load + equivalent live load
Equivalent live loadMachine load

VSTATIC LG1

Live load
tributary area

Worker line load

20
 ft 50 f

t

Machine load

VEXT LG1 Note: includes machine loadVSTATIC LG1 

To predict VEXT LG1

Convert 3D loads
to equivalent one
dimensional loads

VEXT LG1  

Figure 7.8 Computation of exterior girder end shear force 
for construction load group LG1 

7.5.2 Prediction error for full (unculled) parametric data set 

In Figure 7.9, the level of conservatism incorporated into the empirical prediction of 
exterior girder end shear force is compared for two different data sets. In Figure 7.9a, normalized 
errors (50% exceedance; Table 7.3; β=-0.01) are illustrated for the ‘culled’ data set that was used 
in the formation of the empirical DF equation. The 459 cases included in this data set include 
only critical loading conditions and critical structural configurations (i.e., those producing 
maximum girder forces). In Figure 7.9b, normalized errors (again computed using β=-0.01) are 
plotted for critical loading conditions, but for all structural configurations (36,288 cases rather 
than 459). Evident in Figure 7.9b is the fact that the use of the proposed empirical prediction 
method produces a 70% exceedance (rather than 50%) when applied to all structural 
configurations. Thus, application of the proposed method to a much larger and more generalized 
set of structures (than was used in the fitting process) is found to be conservative, but not overly 
so. In Figure 7.10, an analogous example is presented but for a different exceedance level. In 
Figure 7.10a, normalized errors are plotted only for critical loading conditions and critical 
structural configurations (459 cases; 95% exceedance; Table 7.3; β=+0.31). In Figure 7.10b, 
normalized errors (again computed using β=+0.31) are plotted for critical loading conditions, but 
for all structural configurations (36,288 cases). In Figure 7.10b, use of the proposed empirical 
prediction method produces a 96% exceedance (rather than 95%) when applied to all structural 
configurations considered in the study. Thus, once again, application of the proposed method to a 
larger and more generalized set of structures is found to be conservative, but not overly so. 
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     (a)       (b) 

Figure 7.9 Prediction error for V EXT LG1 using Eqn. (7.17) and a 50% exceedance level: 
(a) For the reduced data set; (b) For the complete large-scale parametric study 

     (a)       (b) 

Figure 7.10 Prediction error for V EXT LG1 using Eqn. (7.17) and a 95% exceedance level: 
(a) For the reduced data set; (b) For the complete large-scale parametric study 

7.5.3 Proposed method compared to traditional tributary area method for Load Group 2 

In structural design for construction Load Group 2 loads, it is conventional practice to 
compute girder end shear forces and moments by assuming that the distribution of load shall be 
based on using a tributary area for each girder in the bridge system. Therefore, it was desirable to 
compare interior and exterior girder end shear force and maximum moment predictions from the 
tributary area design method to girder end shear force and maximum moment values computed 
using the proposed DF equation approach of the present study. In Figure 7.11 – Figure 7.14, 
values computed using the proposed DF method [using Eqn. (7.17), a 95% exceedance level, and 
a static analysis] are compared to values computed using the conventional tributary area method. 
In each case, the shear values have been normalized by FEA results from the culled data set (459 
cases). The culled data set was selected as opposed to the full data set for comparison, due to 
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redundant predictions that arise when using the tributary area method for specific bridge 
parameters. For example, two cases with different skew angles (and all remaining parameters the 
same) will produce equal predictions for both cases, using the tributary area method. Similarly, 
parameters such as the number of braces and girder depth will not influence quantities computed 
using the tributary area method. As a result, only the culled data set was considered.  

As shown in Figure 7.11 – Figure 7.14, predictions using the traditional tributary area 
method relative to the corresponding FEA results were less conservative compared to the 
proposed DF equation approach. This observation can be attributed to the assumed simplification 
in the transfer (distribution) of load using the tributary area method. Finite element analysis, 
from which the proposed DF expressions were derived, more accurately model the distribution 
of load, as compared to the simplified tributary area method. 

          (a)           (b) 

Figure 7.11 Prediction error for V EXT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method 

          (a)           (b) 

Figure 7.12 Prediction error for V INT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method 
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          (a)           (b) 

Figure 7.13 Prediction error for M EXT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method 

          (a)           (b) 

Figure 7.14 Prediction error for M INT LG2 using: (a) Eqn. (7.17) and a 95% exceedance level;  
(b) Traditional tributary area method 
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CHAPTER 8 
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

8.1 Summary and Conclusions 

In the first phase of this study, finite element models of Florida-I Beams were developed 
and analyzed for the purpose of updating previously developed capacity equations for wind load 
and gravity load. Using data available in published engineering literature, an approximate 
representation of thermally induced girder sweep was developed for bridges that are located in 
Florida. Importantly, thermal sweep values were found to be on the same order of magnitude as 
those corresponding to allowable fabrication (i.e., construction) sweep tolerances. Finite element 
analyses of numerical models that included the effects of thermal sweep, revealed—as 
expected—that girder capacities were diminished by inclusion of thermal sweep. Consequently, 
updated capacity equations—Eqn. (4.5) and Eqn. (5.3)—that account for thermal sweep were 
developed to replace design capacity equations previously developed in FDOT study BDK75-
977-33 (Consolazio et al., 2013). Additionally, a limited-scope parametric study indicated that 
the updated baseline gravity load capacity Eqn. (5.3) can be used in conjunction with Eqn. (9.23) 
from Consolazio et al. (2013) to account for a number of additional system characteristics (brace 
stiffness, number of braces, etc.). 

In the second phase of this study, finite element analyses of partially constructed bridge 
systems—consisting of multiple Florida-I Beam (FIBs) with construction loads—were used to 
quantify distribution factors (DF) for interior and exterior girder end shear forces and maximum 
girder moments. A large-scale parametric study was conducted, with consideration of different 
Florida-I Beam cross-sections, span lengths, girder spacing, deck overhang widths, skew angles, 
number of girders, number of braces, and bracing configurations (K-brace and X-brace), to 
quantify shear and moment distribution factor data. These data were quantified separately for 
two different construction load groups and subsequently used to develop empirical distribution 
factor equations for use in bridge design. The proposed DF equations incorporate the use of an 
exceedance factor that can be selected to achieve various desired levels of conservatism. The 
proposed empirical DF equations, when used in conjunction with simple static beam analyses, 
provide an efficient and accurate means of conservatively computing girder end shear forces and 
maximum girder moments during the construction-phase, without the need for detailed finite 
element analysis. 

8.2 Recommendations 

Based on the analytical data generated during this study, the following recommendations 
are suggested: 

 
 The newly developed unanchored girder wind capacity (Pmax,0) Eqn. (4.5), which 

incorporates the influence of estimated thermal sweep (reproduced below), should be 
used as a replacement for the corresponding equation previously developed in FDOT 
study BDK75-977-33 [see Eqn. (8.2) in Consolazio et al., (2013) which has been 
reproduced herein as Eqn. (4.4)]: 
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 (4.5)

where Pmax,0 is the wind capacity in psf, L is the span length in ft, and D is the FIB cross-
section depth in inches. 
  

 The newly developed baseline buckling capacity (C0) equation for an unanchored two-
girder strut-braced system in zero wind, Eqn. (5.3), which incorporates the influence of 
estimated thermal sweep (and is reproduced below), should be used as a replacement for 
the corresponding equation previously developed in FDOT study BDK75-977-33 [see 
Eqn. (9.2) in Consolazio et al., (2013) which has been reproduced herein as Eqn. (5.2)]. 
Additionally, the newly developed C0 Eqn. (5.3) can be used in conjunction with Eqn. 
(9.23) from FDOT study BDK75-977-33 (Consolazio et al. 2013), which has been 
reproduced herein as Eqn. (5.4): 

4 2
0 4 7 0 .5

L

C e


   (5.3)

where C0 is in g and L is the span length in ft. 
 

 It is recommended that the distribution factors (DF) expressions developed in this 
study—Eqn. (7.17), Table 7.2, and Table 7.3 (reproduced below)—be used in the 
calculation of girder end shear forces and moments that are caused by the application of 
construction loads. It has been demonstrated that the use of these distribution factor 
expressions—coupled with simple beam analyses—produces more accurate shear and 
moment data than does the traditional tributary width analysis approach: 
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(7.17)

where DF is the predicted distribution factor, N is the number of girders in the bridge 
cross-section, L is the span length in ft, OH is the deck overhang width in ft, S is the 
girder center-to-center spacing in ft, θ is the skew angle in deg., a1 through a9 are 
empirical fit constants listed in Table 7.2, and β is exceedance factor selected to achieve a 
desired level of exceedance (i.e., conservatism) listed in Table 7.3. 
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Table 7.2 Constants for distribution factors (DF) calculation 

DF equation a1 a2 a3 a4 a5 a6 a7 a8 a9 

DFV EXT LG1 -0.26 0.60 -0.41 0.03 -0.03 1.76  0.27 0.10 0.02 

DFV INT LG1 -0.90 0.13 -0.11 0.01 0.02 4.80  0.02 0.03 0.01 

DFM EXT LG1 -0.23 0.47 -0.33 2.51 -0.09 27.00 0.09 0 0 

DFM INT LG1  0.06 1.94 -1.22 0.53 0.17 8.63 -0.03 0 0 

DFV EXT LG2 -0.01 0.78 -0.93 0.91 0.06 0.81 0.36 0 0 

DFV INT LG2 0.03 0.89 -1.08 1.04 0.04 10.16 -0.16 0 0 

DFM EXT LG2 -0.06 1.66 -0.77 2.29 -0.01 24.58 0.17 0 0 

DFM INT LG2 0.01 0.72 -1.09 18.19 0.01 14.01 -0.16 0 0 

NOTE: DF equations were developed specifically for construction loads specified by FDOT SDG (2016) 

Table 7.3 Distribution factor (DF) exceedance values 

β constant 50% exceedance 84% exceedance 95% exceedance 98% exceedance 

DFV EXT LG1 -0.01 0.12 0.31 0.53 

DFV INT LG1 -0.04 0.14 0.29 0.42 

DFM EXT LG1 -0.04 0.01 0.08 0.14 

DFM INT LG1 -0.03 0.06 0.12 0.20 

DFV EXT LG2 -0.09 0.03 0.12 0.15 

DFV INT LG2 -0.05 0.05 0.17 0.27 

DFM EXT LG2 -0.01 0.06 0.15 0.17 

DFM INT LG2 -0.01 0.06 0.11 0.15 
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APPENDIX A 
CROSS-SECTIONAL PROPERTIES OF FLORIDA-I BEAMS  

 

In this study, finite element models were analyzed to evaluate girder shear forces and 
moments in Florida-I Beams (FIBs). In each model, the FIBs were modeled using warping 
beams, specialized beam elements available in the ADINA finite element code, which require the 
calculation of a comprehensive set of cross-sectional properties. This appendix provides 
mathematical definitions of all such properties and corresponding numeric values that were 
calculated for each FIB cross-sectional shape. 

Mathematical definitions of cross-sectional properties that are required to use the warping 
beam element in ADINA are listed in Table A.1. Each property requires the evaluation of an 
integral over the area of the cross-section, in which the integrands are written in terms of 
coordinates x and y, referenced to the geometric centroid of the section (Figure A.1). Some 
properties also require knowledge of the warping function, ψ(x,y), which represents the 
torsionally-induced out-of-plane warping displacements per rate of twist at every point on the 
cross-section. (The units of ψ are therefore in/(rad/in) or in2.)  

Table A.1 Definitions of cross-sectional properties required for use of a warping beam element 

Property Integral form Units Description 

A 
A
dA  in2 Cross-sectional area 

Ixx 2

A
y dA  in4 Strong-axis moment of inertia 

Iyy 2

A
x dA  in4 Weak-axis moment of inertia 

Ixy 
A

xy dA  in4 Product of inertia 

xs  1
cA

xx

y dA
I

   in  X-coordinate of shear center 

ys  1
cA

yy

x dA
I

  in  Y-coordinate of shear center 

J 
2 2

A

d d
x y x y dA

dy dx

  
   

 
  in4 St. Venant torsional constant 

Cω 2

A
dA  in6 Warping constant 

Ixr  2 2

A
x x y dA  in5 Twist/weak-axis bending coupling term 

Iyr  2 2

A
y x y dA  in5 Twist/strong-axis bending coupling term 

Iωr  2 2

A
x y dA   in6 Twist/warping coupling term 

Irr  22 2

A
x y dA  in6 Wagner constant 
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Figure A.1 Coordinate system used in the calculation of cross-sectional properties 

For general cross-sectional shapes (e.g., an FIB), analytical (closed-form) solutions for 
ψ(x,y) do not exist; instead the warping field ψ(x,y) must be solved numerically. In this study, the 
calculation of ψ(x,y) for each FIB shape was accomplished by discretizing the cross-sectional 
shape into a high-resolution mesh of thousands of two-dimensional triangular elements, and then 
employing a finite element approach to solve the governing differential equation. 

In general, solutions for ψ(x,y) change depending on the assumed location of the center of 
twist. In the literature, the term ‘warping function’ typically refers to a particular solution (ψ in 
Table A.1) corresponding to a state of pure torsion, i.e., torsion about the shear center. As a 
result, prior knowledge of the location of the shear center is required to compute several of the 
warping beam properties. However, it is possible to calculate the coordinates of the shear center, 
xs and ys (Table A.1), using an alternative solution to the warping function (ψc), where the center 
of twist is assumed to be located at the centroid of the section. Therefore, two different warping 
functions were computed for each FIB section: first the section centroid was used to compute ψc 
and then the location of the shear center, obtained from ψc, was used to compute ψ as well as the 
remaining cross-sectional properties.  

Because all FIB cross-sections are symmetric about the y-axis, Ixy, xs, Ixr, and Iωr have a 
value of zero (0) by definition. The remaining (non-zero) cross-sectional properties calculated 
for each FIB shape are summarized in Table A.2. 

Table A.2 Cross-sectional properties of Florida-I Beams 

Section A (in2) Ixx (in4) Iyy (in
4) ys (in) J (in4) Cω (in6) Iyr (in5) Irr (in6) 

36″ FIB  807  127,700 81,283 3.00 30,864  11,577,000   703,250    86,224,000 

45″ FIB  870  226,810 81,540 3.46 31,885  21,835,000  1,521,200   167,760,000 

54″ FIB  933  360,270 81,798 3.81 32,939  35,370,000  2,760,500   315,370,000 

63″ FIB  996  530,790 82,055 4.07 33,973  52,203,000  4,471,300   562,480,000 

72″ FIB 1059  741,060 82,314 4.27 35,041  72,337,000  6,693,800   951,390,000 

78″ FIB 1101  904,610 82,484 4.38 35,693  87,610,000  8,473,400 1,314,600,000 

84″ FIB 1143 1,087,800 82,657 4.46 36,421 104,350,000 10,504,000 1,781,400,000 

96″ FIB 1227 1,516,200 83,002 4.56 37,859 142,280,000 15,336,000 3,107,900,000 

  

Centroid

x

y
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APPENDIX B 
EXAMPLE CALCULATIONS: 

78” FIB THERMAL SWEEP 
 
Presented in this appendix is a calculation worksheet that was prepared to determine 

thermal sweep for a Florida-I Beam, at an arbitrary span length. Furthermore, thermal sweep 
quantities (and subsequent thermal sweep ratios) were computed using transverse temperature 
gradients proposed in the present study, based on a literature review conducted in the present 
study (Lee, 2010). 
  



Thermal sweep for a 78" Florida-I Beam

 

FIB dimensions from FDOT website 
(Design Standards eBook 2014, http://www.dot.state.fl.us/rddesign/DS/14/STDs.shtm)

 Concrete material properties ...

Ec 5589 ... (ksi) Modulus of elasticity (based on fc' = 8.5 ksi)

α 12 10
6

 ... (1/oC) Coefficient of thermal expansion

 Thermal sweep calculations using WINTER temperature gradients ...
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 Top flange dimensions ...

Vectors for plotting top flange

TopFlangeWidthDim

0

17

20.5

27.5

31

48



















 ... (in.) Top flange width transition points (used in function below)  

TopFlangeHeightDim

3.5

5

8.5

8.5

5

3.5



















 ... (in.) Top flange height at each transition point (used in function below)

0 10 20 30 40
0

5

10

15

20
Top flange geometry

Width (inches)

H
ei

gh
t (

in
ch

es
)

TopFlangeHeight x( ) linterp TopFlangeWidthDim TopFlangeHeightDim x( )

... (in.) Top flange height as a function of x (width) 
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0 10 20 30 40
0

5

10

15

20

 Top flange temperature gradient (adapted from Lee 2010) ...

TopFlangeWidth 48 ... (in.) Total top flange width

Btop TopFlangeWidth 4 12 ... (in.) Dimension specified in top flange temperature gradient

x 0 TopFlangeWidth 0.01 TopFlangeWidth ... (in.) Range variable for top flange temperature gradient

T1 19 ... (oC) Maximum top flange temperature (T1) for Atlanta, GA in winter (Lee 2012)

T2 T1 4 4.8 ... (oC) Temperature at first Btop dimension 

T3 0 ... (oC) Temperature at second Btop dimension

λ 5 19.6 0.26 ... Dimensionless ratio proposed for current project to add ascending branch

T4 λ T1 4.8 ... (oC) Temperature at right end (additional ascending branch)

TopFlangeTemperatures

T1

T2

T3

T4











19.0

4.8

0.0

4.8











 ... (oC) Top flange temperatures for top flange temperature gradient

BtopDim

0

Btop

2 Btop

TopFlangeWidth















0

12

24

48











 ... (in.) Top flange width dimension at each temperature value 

TopFlangeTemp x( ) e linterp BtopDim TopFlangeTemperatures x( ) x 0 x TopFlangeWidthif

e 0 otherwise

ereturn



... (oC) Top flange temperature as a function of x (width)

0 10 20 30 40
0

5

10

15

20

TopFlangeTemp x( )

x
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 Top flange moment calculation ...

TopFlangeMoment

0

TopFlangeWidth

xEc α TopFlangeTemp x( ) TopFlangeHeight x( )
TopFlangeWidth

2
x











d 535.5

TopFlangeMoment 12 44.6 ... (kip-ft) Top flange moment due to applied top flange temperature gradient

 Web dimensions ...

Vectors for plotting web

WebWidthDim
0

7








 ... (in.) Web width transition points (used in function below)  

WebHeightDim
45.5

45.5









 ... (in.) Web height at each transition point (used in function below)

0 10 20 30
0

10

20

30

40

50
Web geometry

Width (inches)

H
ei

gh
t (

in
ch

es
)

WebHeight x( ) linterp WebWidthDim WebHeightDim x( )

... (in.) Web height as a function of x (width) 
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 Web temperature gradient (adapted from Lee 2010) ...

WebWidth 7 ... (in.) Total web width

Bweb WebWidth 2 3.5 ... (in.) Dimension specified in web temperature gradient

x 0 WebWidth 0.01 WebWidth ... (in.) Range variable for web temperature gradient

T1 15 ... (oC) Maximum web temperature (T1) for Atlanta, GA in winter (Lee 2012) 

T2 T1 4 3.8 ... (oC) Temperature at first Bweb dimension 

T3 0 ... (oC) Temperature at second Bweb dimension

WebTemperatures

T1

T2

T3











15.0

3.8

0.0











 ... (oC) Web temperatures for web temperature gradient

BwebDim

0

Bweb

WebWidth











0

3.5

7











 ... (in.) Web width dimensions at each temperature point 

WebTemp x( ) e linterp BwebDim WebTemperatures x( ) x 0 x WebWidthif

e 0 otherwise

ereturn



... (oC) Web temperature as a function of x (width)

0 10 20 30
0

10

20

30

40

50

0 10 20 30
0

5

10

15

WebTemp x( )

x
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 Web moment calculation ...

WebMoment

0

WebWidth

xEc α WebTemp x( ) WebHeight x( )
WebWidth

2
x











d 186.9

WebMoment 12 15.6 ... (kip-ft) Top flange moment due to applied top flange temperature gradient

 Bottom flange dimensions ...

Vectors for plotting bottom flange

... (in.) Bottom flange width transition points (used in function below)  
BottomFlangeWidthDim

0

12.185

15.5

22.5

25.815

38





















BottomFlangeHeightDim

7

14.5

24

24

14.5

7



















 ... (in.) Bottom flange height at each transition point (used in function below)

0 10 20 30 40
0

10

20

30

40
Bottom flange geometry

Width (inches)

H
ei

gh
t (

in
ch

es
)

BottomFlangeHeight x( ) linterp BottomFlangeWidthDim BottomFlangeHeightDim x( )

... (in.) Bottom flange height as a function of x (width) 
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 Bottom flange temperature gradient (adapted from Lee 2010) ...

BottomFlangeWidth 38 ... (in.) Total bottom flange width

Bbot BottomFlangeWidth 4 9.5 ... (in.) Dimension specified in bottom flange temperature gradient

x 0 BottomFlangeWidth 0.01 BottomFlangeWidth ... (in.) Range variable for top flange temperature gradient

T1 25 ... (oC) Maximum bottom flange temperature (T1) for Atlanta, GA in winter (Lee 2012)

T2
4

9
T1 11.1 ... (oC) Temperature at first Bbot dimension 

T3
1

9
T1 2.8 ... (oC) Temperature at second Bbot dimension

T4 0 ... (oC) Temperature at third Bbot dimension

λ 4 25.6 0.16 ... Dimensionless ratio proposed for current project to add ascending branch

T5 λ T1 3.9 ... (oC) Temperature at right end (additional ascending branch)

BottomFlangeTemperatures

T1

T2

T3

T4

T5

















25.0

11.1

2.8

0.0

3.9

















 ... (oC) Bottom flange temperatures for top flange temperature gradient

BbotDim

0

Bbot

2 Bbot

3 Bbot

BottomFlangeWidth















0

9.5

19

28.5

38

















 ... (in.) Bottom flange width dimensions at each temperature point 

BottomFlangeTemp x( ) e linterp BbotDim BottomFlangeTemperatures x( ) x 0 x BottomFlangeWidthif

e 0 otherwise

ereturn



... (oC) Bottom flange temperature as a function of x (width)
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0
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30

BottomFlangeTemp x( )

x

 Bottom flange moment calculation ...

BottomFlangeMoment

0

BottomFlangeWidth

xEc α BottomFlangeTemp x( ) BottomFlangeHeight x( )
BottomFlangeWidth

2
x











d

BottomFlangeMoment 12 146.6 ... (kip-ft) Bottom flange moment due to applied top flange temperature gradient

 Thermal sweep and sweep ratio calculations ...

L

145 12

170 12

195 12











1740

2040

2340











 ... (in.) Minimum, intermediate, and maximum span length for a 78" FIB

Iy 82484 ... (in.4) Weak-axis moment of inertia for a 78" FIB (Appendix A)

TotalMoment TopFlangeMoment WebMoment BottomFlangeMoment

TotalMoment 12 206.8 ... (kip-ft) Total moment due to winter transverse temperature gradients

... (in.) thermal sweep for a 78" FIB due to winter transverse gradients
for the three span lengths consideredWinterThermalSweep

TotalMoment L
2



8 Ec Iy

2.04

2.80

3.68













... (in.) Largest allowable sweep due to fabrication errors
(PCI, 1/8" for every 10 ft of span length)FabricationSweep

1

8

L

10 12( )


1.81

2.13

2.44













... Winter sweep ratios for a 78" FIB considering the minimum,
intermediate, and maximum span lengthsWinterSweepRatio

WinterThermalSweep

FabricationSweep

1.12

1.32

1.51












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APPENDIX C 
EXAMPLE CALCULATIONS: 

TEMPORARY BRACING ASSESSMENT FOR AN FIB BRIDGE 
 
Presented in this appendix is an updated version of a calculation worksheet that was 

previously presented in the final report for FDOT study BDK75-977-33 (Consolazio et al., 
2013). Example calculations demonstrating the assessment of temporary bracing requirements 
for a typical FIB bridge are illustrated. The updated calculation worksheet shown in this 
appendix utilizes equations from Consolazio et al. (2013) together with Eqn. (4.5) and Eqn. (5.3) 
from the present study. 
  



Design of temporary bracing for an FIB bridge

θskew

L

S

Plan view

D

- 2% cross-slope

Section view

S

 System parameters...

FIB78 ... Girder type

D 78 ... (in) Section depth

wsw 1146 ... (lbf/ft) Girder self-weight

L 170 ... (ft) Span length

n 8 ... Number of girders

S 10 ... (ft) Girder spacing

θskew 10 ... (deg) Skew angle

θskew θskew
π

180
 0.175 ... Convert from deg to rad
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 Wind loads...

G1

G2

G3

P

P

Loffset

CP,U

CP,U

CP,U
CP,S

V 110 ... (mph) Basic wind speed

G 0.85 ... Gust effect factor (SDG §2.4.1E)

z 20 ... (ft) Elevation of bridge girders

Kz 2.01
z

900






0.2105

 0.902 ... Velocity pressure exposure coefficient (SDG §2.4.1D)

CP,U 2.0 ... Pressure coefficient for  unshielded FIB (Girder G1) (Figure 5.17 in BDK75-977-33)

CP,S 1.0 ... Pressure coefficient for  shielded FIB (girders G3, G4, etc) (Figure 5.17 in BDK75-977-33)

PU 0.6 2.56 10
6

 Kz V
2

 G CP,U



 0.028 ... (ksf) Design wind pressure for unshielded FIB (SDG §2.4.1D)

PU PU 1000 28.5 ... Convert from ksf to psf

PS 0.6 2.56 10
6

 Kz V
2

 G CP,S



 0.014 ... (ksf) Design wind pressure for shielded FIB (SDG §2.4.1D)

PS PS 1000 14.2 ... Convert from ksf to psf

Loffset S tan θskew  1.8 ... (ft) Skew offset length (see figure above)

Lshielded L Loffset ... (ft) Shielded length

PG1

G1 G2 G3 G4 G5 G6 G7 G8

PG3to8 PG3to8 PG3to8 PG3to8 PG3to8 PG3to8PG2

PG1 PU 28.5 ... (psf) Average wind load on girder G1

PG2

0 Lshielded PU Loffset

L
0.3 ... (psf) Average wind load on girder G2

PG3to8

PS Lshielded PU Loffset

L
14.4 ... (psf) Average wind load on girders G3, G4, etc.

Pbar

PG1 PG2 PG3to8 n 2( )

n
14.4 ... (psf) Average wind load per girder (Equation 9.7 in BDK75-977-33)
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 Compute anchor roll stiffness...

Force applied to anchor
by rotating girder

Wind load


R

AnchorMoment arm

kanchor

kanchor 75 ... (kip/in) Axial stiffness of anchor (Figure 7.6 in BDK75-977-33)

R 55 ... (in) Anchor moment arm (Figure 7.6 in BDK75-977-33)

θ 45 ... (deg) Angle between anchor and girder force vector (Figure 7.6 in BDK75-977-33)

θ θ
π

180
 ... Convert from deg to rad

kroll,anchor kanchor cos θ( )( )
2

 R
2

 113438 ... (kip-in/rad) Roll stiffness of anchor (Equation 7.4 in BDK75-977-33)

kroll,anchor kroll,anchor 12 9453 ... Convert from kip-in/rad to kip-ft/rad

 Compute wind capacity of individual girder ...

Pmax,0 63e

L

55 1

3
15e

D

79












34e

D

72


1

8
 5.327

... (psf) Updated wind capacity of unanchored girder (Equation 4.5 in BDV31-977-46)

Pmax Pmax,0 11e

L

22
kroll,anchor  51.147

... (psf) Final wind capacity of anchored girder (Equation 8.6 in BDK75-977-33)

PG1 28.498 Pmax PG1 ... OK (Wind capacity exceeds design wind load)

 Compute capacity of multi-girder system (strut braces)...

... (g) Updated baseline system capacity (Equation 5.3 in BDV31-977-46)
C0 47 e

L

42
 0.5 1.321
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 Compute effective stiffness of K-brace...

Pin

Fixed

4x4x  steel angle (typ.)⅜

M

1

2

3

7

5

10

End moments released

Rigid links
6 4

Structural model used for 
determination of effective brace stiffness

E = 29000 ksi
A = 2.86 in
I = 4.32 in

2

4

K-Brace design

 Node  X-Coordinate  Y-Coordinate
  1        3.50         69.50
  2        3.50         24.00
  3      116.50         67.10
  4      116.50         21.60
  5       60.00         68.30
  6        6.50         23.94 
  7      113.50         21.66
 10        0.00          0.00  

M 1 ... (kip-in) Unit moment load applied to structural model

θ10 2.26 10
7

 ... (rad) Angular displacement computed from model at node 10

kbrace
M

θ10

4.425 10
6

 ... (kip-in/rad) Effective brace stiffness

kbrace kbrace 12 3.687 10
5

 ... Convert from kip-in/rad to kip-ft/rad
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 Compute capacity of multi-girder system (K-braces at girder ends) 

Table 9.4
  n i   Brace locations         ω 

 0   End bracing            1.0
 1   Midpoint bracing       1.4
 2   Third-point bracing    1.6
 3   Quarter-point bracing  1.7

ni 0 ...Number of interior brace points

ω 1 ...Interior brace coefficient (Table 9.4 in BDK75-977-33, reproduced above)

C C0 ω

620 kbrace e

L

30


kbrace 1000000


Pbar

1000000
8 L

2
 0.004 L kbrace 5100 L kbrace 900000





D PU

48wsw

 1.303

... (g) Final system capacity (Equation 9.23 in BDK75-977-33)

C 1 ... OK
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APPENDIX D 
DETAILED ILLUSTRATIONS: 

QUANTIFYING EXTERIOR AND INTERIOR GIRDER END SHEAR FORCES AND 
MAXIMUM MOMENTS WITH CONSTRUCTION LOADS APPLIED 

 
Presented in this appendix are detailed illustrations of the proposed method for 

quantifying interior and exterior girder end shear forces and maximum moments. In each case, a 
simply supported static beam analysis is presented in conjunction with the proposed construction 
load distribution factor (DF) equations. 
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Load Group 1 – Exterior girder end shear force prediction 

  

50 ft
20 ft

Equivalent worker line load + equivalent live load
Equivalent live loadMachine load

VSTATIC LG1

Live load
tributary area

Worker line load

20
 ft 50 f

t

Machine load

VEXT LG1 Note: includes machine loadVSTATIC LG1 

To predict VEXT LG1

Convert 3D loads
to equivalent one
dimensional loads

VEXT LG1  

1 1 1E X T L G S T A T IC L G V E X T L GV V D F   

       1

0.27
0.41 0.03 0.02

1 0.26 0.60 0.03 1.76 0.10V EXT LG

O H

S
D F N L          

   
 

 where: VEXT LG1 = Load Group 1 exterior girder end shear force prediction 
 VSTATIC LG1 = Maximum Load Group 1 end shear force using a static analysis (as shown above) 
 DFV EXT LG1 = Load Group 1 exterior girder end shear force distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center-to-center spacing (ft) 
 θ = Skew angle (deg.) 
    

 

 Note: Normalized error defined as 
prediction

FEA

V

V
, where normalized error 1.0 indicates a conservative prediction 
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Load Group 1 – Interior girder end shear force prediction 

 

50 ft
20 ft

Equivalent worker line load + equivalent live load
Equivalent live loadMachine load

VSTATIC LG1

Live load
tributary area

Worker line load

20
 ft 50

 ft

Machine load

VINT LG1
Note: includes machine loadVSTATIC LG1 

To predict VINT LG1

Convert 3D loads
to equivalent one
dimensional loads

 

1 1 1IN T L G S T A T IC L G V IN T L GV V D F   

       1
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   
 

 where: VINT LG1 = Load Group 1 interior girder end shear force prediction 
 VSTATIC LG1 = Maximum Load Group 1 end shear force using a static analysis (as shown above) 
 DFV INT LG1 = Load Group 1 interior girder end shear force distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
 θ = Skew angle (deg.) 
    

 

 Note: Normalized error defined as 
prediction

FEA

V

V
, where normalized error 1.0 indicates a conservative prediction 
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Load Group 1 – Exterior girder maximum moment prediction 

 

Equivalent worker line load  + 
equivalent live load

Equivalent live loadMachine load

To predict MEXT LG1

Convert 3D loads
to equivalent one
dimensional loads

MEXT LG1

20 f
t

Machine load

Live load tributary area

Worker line load

MEXT LG1

50
 ft

50 ft
20 ft

 

 

1 1 1E X T L G S T A T IC L G M E X T L GM M D F   

 

MSTATIC LG1

 

     1
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   
 

 where: MEXT LG1 = Load Group 1 exterior girder maximum bending moment prediction 
 MSTATIC LG1 = Maximum Load Group 1 moment using a static analysis (as shown above) 
 DFM EXT LG1 = Load Group 1 exterior girder maximum moment distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 Note: Normalized error defined as 
prediction

FEA

M

M
, where normalized error 1.0 indicates a conservative prediction 
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Load Group 1 – Interior girder maximum moment prediction 

 

Equivalent worker line load  + 
equivalent live load

Equivalent live loadMachine load

To predict MINT LG1

Convert 3D loads
to equivalent one
dimensional loads

MINT LG1

20 f
t

Machine load

Live load tributary area

Worker line load

50
 ft

50 ft
20 ft

 

 

1 1 1IN T L G S T A T IC L G M IN T L GM M D F   

 

MSTATIC LG1
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 where: MINT LG1 = Load Group 1 interior girder maximum bending moment prediction 
 MSTATIC LG1 = Maximum Load Group 1 moment using a static analysis (as shown above) 
 DFM INT LG1 = Load Group 1 interior girder maximum moment distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 

 Note: Normalized error defined as 
prediction

FEA

M

M
, where normalized error 1.0 indicates a conservative prediction 

  

Normalized error

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5
0

10%

20%

30%

40%
  50% exceedance  

 = -0.03

Normalized error

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5
0

10%

20%

30%

40%
  84% exceedance  

 = 0.06

Normalized error

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5
0

10%

20%

30%

40%
  95% exceedance  

 = 0.12

Normalized error

F
re

qu
en

cy

0.5 1.0 1.5 2.0 2.5
0

10%

20%

30%

40%
  98% exceedance  

 = 0.20



 

95 

Load Group 2 – Exterior girder end shear force prediction 

 

Equivalent Load Group 2 loads

VSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

To predict VEXT LG2

Convert 3D loads
to equivalent one
dimensional loads

VEXT LG2

Span length

Load Group 2 loads

VEXT LG2  

2 2 2E X T L G S T A T IC L G V E X T L GV V D F   
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 where: VEXT LG2 = Load Group 2 exterior girder end shear force prediction 
 VSTATIC LG2 = Maximum Load Group 2 end shear force using a static analysis (as shown above) 
 DFV EXT LG2 = Load Group 2 exterior girder end shear force distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 

 Note: Normalized error defined as 
prediction

FEA

V

V
, where normalized error 1.0 indicates a conservative prediction 
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 Load Group 2 – Interior girder end shear force prediction 

 

Equivalent Load Group 2 loads

VSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

To predict VINT LG2

Convert 3D loads
to equivalent one
dimensional loads

VINT LG2

Span length

Load Group 2 loads
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 where: VINT LG2 = Load Group 2 interior girder end shear force prediction 
 VSTATIC LG2 = Maximum Load Group 2 end shear force using a static analysis (as shown above) 
 DFV INT LG2 = Load Group 2 interior girder end shear force distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 

 Note: Normalized error defined as 
prediction

FEA

V

V
, where normalized error 1.0 indicates a conservative prediction 
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Load Group 2 – Exterior girder maximum moment prediction 

 

To predict MEXT LG2

Convert 3D loads
to equivalent one
dimensional loads

Load Group 2 loads

MEXT LG2

MEXT LG2

Equivalent Load Group 2 loads

Span length

Note: Equivalent Load Group 2 loads include overhang bracket self-weight
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 where: MEXT LG2 = Load Group 2 exterior girder maximum bending moment prediction 
 MSTATIC LG2 = Maximum Load Group 2 moment using a static analysis (as shown above) 
 DFM EXT LG2 = Load Group 2 exterior girder maximum moment distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 

 Note: Normalized error defined as 
prediction

FEA

M

M
, where normalized error 1.0 indicates a conservative prediction 
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Load Group 2 – Interior girder maximum moment prediction 

 

To predict MINT LG2

Convert 3D loads
to equivalent one
dimensional loads

Load Group 2 loads

MINT LG2

Equivalent Load Group 2 loads

Span length

Note: Equivalent Load Group 2 loads include overhang bracket self-weight
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 where: MINT LG2 = Load Group 2 interior girder maximum bending moment prediction 
 MSTATIC LG2 = Maximum Load Group 2 moment using a static analysis (as shown above) 
 DFM INT LG2 = Load Group 2 interior girder maximum moment distribution factor 
 β = Exceedance factor (selected from figures below) 
 N = Number of girders 
 L = Span length (ft) 
 OH = Deck overhang width (ft) 
 S = Girder center to center spacing (ft) 
    
    

 

 Note: Normalized error defined as 
prediction

FEA

M

M
, where normalized error 1.0 indicates a conservative prediction 
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APPENDIX E 
EXAMPLE CALCULATIONS: 

QUANTIFYING EXTERIOR AND INTERIOR GIRDER END SHEAR FORCES AND 
MAXIMUM MOMENTS WITH CONSTRUCTION LOADS APPLIED 

 
Presented in this appendix is an example calculation worksheet that demonstrates (by 

example) how the proposed distribution factor equations are used in conjunction with a simply 
supported static beam analysis to predict girder end shear forces and maximum girder moments. 



Prediction of exterior and interior girder end shear forces and moments
with construction Load Group 1 (LG1) loads applied

 System parameters...

N 5 ... Number of girders

L 180 ... (ft) Span length

OH 48 12 4 ... (ft) Deck overhang (OH) width

S 9 ... (ft) Girder center-to-center spacing

θ 15 ... (deg.) Skew angle

 Considering construction LG1 loads applied ...

Load Case 3: 
Finishing machine

 at end-span

Load Case 2: 
Finishing machine 

at midspan

Load Case 1: 
Finishing machine 

at end-span

Finish machine
load on both sides

Construction live load 
tributary area

50 ft (typ.)

Worker line load

20 ft (typ.)

 Compute additional bridge dimensions ...

DeckWidth S N 1( )[ ] 2 OH( ) 44 ... (ft) Width of the deck (edge to edge)

TotalWidth S N 1( )[ ] 2 OH
2.5

12


24

12












 48.42 ... (ft) Width of the bridge (including overhang formwork)

 Quantify construction LG1 loads ...

LiveLoad 20 ... (lbf/ft2) Live load (Load Group 1)

WorkerLine 75 ... (lbf/ft) Worker line load (Load Group 1)

MachineLoad width( ) MachineLoad 7 0 width 32if

MachineLoad 11 32 width 56if

MachineLoad 13 56 width 80if

MachineLoad 16 80 width 120if

MachineLoadreturn



MachineLoad MachineLoad DeckWidth( ) 11 ... (kips) Machine load as a function of deck width (LG1)
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50 ft
20 ft

Equivalent worker line load + equivalent live load
Equivalent live loadMachine load

VSTATIC LG1

Live load
tributary area

Worker line load

20 ft 50 ft

Machine load

VEXT LG1 Note: includes machine loadVSTATIC LG1 

To predict VEXT LG1

Convert 3D loads
to equivalent one
dimensional loads

VEXT LG1

 Quantify VSTATIC LG1  using a static analysis with the finishing machine load located at one end...

MachineLocation 0 ... (ft) Machine located at End A

 Collapse construction LG1 loads to equivalent one-dimensional loads ...

EquivLive LiveLoad TotalWidth 1000 0.968 ... (kip/ft) Converted pressure live load (psf) to equivalent line load

LiveLength 50 ... (ft) Length of applied live load

LiveArm LiveLength 2 25 ... (ft) Distance from End A to the center of the equivalent live load

EquivWorker 2 WorkerLine 1000 0.15 ... (kip/ft) Convert two worker line loads (psf), applied on each
overhang, to equivalent (single) worker line load

WorkerLength 20 ... (ft) Length of the applied worker line load

WorkerArm WorkerLength 2 10 ... (ft) Distance from End A to the center of the equivalent worker
line load

 Quantify reactions ...

RxnB
EquivLive LiveLength( ) LiveArm EquivWorker WorkerLength( ) WorkerArm MachineLoad 0

L
6.89

... (kips) Reaction at End B by summing the moments at End A

RxnA MachineLoad EquivLive LiveLength EquivWorker WorkerLength( ) RxnB 55.53

... (kips) Reaction at End A

 Define ... VSTATIC LG1

VSTATIC LG1 RxnA 55.53 ... (kips) Maximum reaction using a static analysis

 Quantify the exterior girder end shear force distribution factor ...

Select a desired exceedance level: β 0.31 to achieve a 95% exceedance level

DFV EXT LG1 1 β( ) 0.26 0.60 N( )
0.41

0.03 L( )
0.03

 1.76
OH

S






0.27

 0.10 θ( )
0.02










 0.541

... LG1 exterior girder end shear force distribution factor

 Compute the exterior girder end shear force prediction ...

VEXT LG1 VSTATIC LG1 DFV EXT LG1 30.01 ... (kips) LG1 exterior girder end shear force prediction
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50 ft
20 ft

Equivalent worker line load + equivalent live load
Equivalent live loadMachine load

VSTATIC LG1

Live load
tributary area

Worker line load

20
 ft 50

 ft

Machine load

VINT LG1
Note: includes machine loadVSTATIC LG1 

To predict VINT LG1

Convert 3D loads
to equivalent one
dimensional loads

 Quantify VSTATIC LG1  using a static analysis with the finishing machine load located at one end...

As shown above, VSTATIC LG1 RxnA 55.53 ... (kips) Maximum reaction using a static analysis

 Quantify the interior girder end shear force distribution factor ...

Select a desired exceedance level: β 0.29 to achieve a 95% exceedance level

DFV INT LG1 1 β( ) 0.90 0.13 N( )
0.11

0.01 L( )
0.02

 4.80
OH

S






0.02

 0.03 θ( )
0.01










 0.268

... LG1 interior girder end shear force distribution factor

 Compute the interior girder end shear force prediction ...

VINT LG1 VSTATIC LG1 DFV INT LG1 14.89 ... (kips) LG1 interior girder end shear force prediction
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Equivalent worker line load  + 
equivalent live load

Equivalent live loadMachine load

To predict MEXT LG1

Convert 3D loads
to equivalent one
dimensional loads

MEXT LG1

MSTATIC LG1

20
 ft

Machine load

Live load tributary area

Worker line load

MEXT LG1

50
 ft

50 ft
20 ft

 Quantify MSTATIC LG1  using a static analysis with the finishing machine load located at the midspan...

MachineLocation L 2 90 ... (ft) Machine located at midspan

 Collapse construction LG1 loads to equivalent one-dimensional loads ...

EquivLive LiveLoad TotalWidth 1000 0.968 ... (kip/ft) Converted pressure live load (psf) to equivalent line load

LiveLength 50 ... (ft) Length of applied live load

EquivWorker 2 WorkerLine 1000 0.15 ... (kip/ft) Convert two worker line loads (psf), applied on each
overhang, to equivalent (single) worker line load

WorkerLength 20 ... (ft) Length of the applied worker line load

 Quantify maximum moment at the midspan...

RxnA MachineLoad EquivLive LiveLength EquivWorker WorkerLength( ) 2 31.21

... (kips) Reaction at End A

MaxMoment RxnA MachineLocation EquivLive
LiveLength

2






LiveLength

4


EquivWorker
WorkerLength

2






WorkerLength

4














 2499

... (kip-ft) Maximum moment at midspan

 Define ... MSTATIC LG1

MSTATIC LG1 MaxMoment 2499 ... (kip-ft) Maximum moment using a static analysis

 Quantify the exterior girder maximum moment distribution factor ...

Select a desired exceedance level: β 0.08 to achieve a 95% exceedance level

DFM EXT LG1 1 β( ) 0.23 0.47 N( )
0.33

2.51 L( )
0.09

 27.00
OH

S






0.09










 0.339

... LG1 exterior girder maximum moment distribution factor

 Compute the exterior girder maximum moment prediction ...

MEXT LG1 MSTATIC LG1 DFM EXT LG1 848 ... (kip-ft) LG1 exterior girder maximum moment prediction
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Equivalent worker line load  + 
equivalent live load

Equivalent live loadMachine load

To predict MINT LG1

Convert 3D loads
to equivalent one
dimensional loads

MINT LG1

MSTATIC LG1

20 ft

Machine load

Live load tributary area

Worker line load

50 f
t

50 ft
20 ft

 Quantify MSTATIC LG1  using a static analysis with the finishing machine load located at the midspan...

As shown above, MSTATIC LG1 2499 ... (kip-ft) Maximum moment using a static analysis

 Quantify the interior girder maximum moment distribution factor ...

Select a desired exceedance level: β 0.12 to achieve a 95% exceedance level

DFM INT LG1 1 β( ) 0.06 1.94 N( )
1.22

0.53 L( )
0.17

 8.63
OH

S






0.03










 0.213

... LG1 interior girder maximum moment distribution factor

 Compute the interior girder maximum moment prediction ...

MINT LG1 MSTATIC LG1 DFM INT LG1 533 ... (kip-ft) LG1 interior girder maximum moment prediction
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Prediction of exterior and interior girder end shear forces and moments
with construction Load Group 2 (LG2) loads applied

 System parameters...

N 5 ... Number of girders

L 180 ... (ft) Span length

OH 48 12 4 ... (ft) Deck overhang (OH) width

S 9 ... (ft) Girder center-to-center spacing

θ 15 ... (deg.) Skew angle

 Considering construction LG2 loads applied ...

K-brace

Wet concrete load

Load Case 3: 
Full-span deck

Load Case 2: 
Midspan loaded deck

Load Case 1: 
No deck load

Overhang bracket

Overhang formwork load

Concrete build-up loadSIP form load

 Compute additional bridge dimensions ...

DeckWidth S N 1( )[ ] 2 OH( ) 44 ... (ft) Width of the deck (edge to edge)

FormWidth S
48

12












N 1( ) 20 ... (ft) Total formwork width (between girders)

TotalWidth S N 1( )[ ] 2 OH
2.5

12


24

12












 48.42 ... (ft) Width of the bridge (including overhang formwork)

 Quantify construction LG2 loads ...

WetConcrete 150
8.5

12






 106.25 ... (lbf/ft2) Wet concrete load (Load Group 2)

ConcreteBuildup 50 ... (lbf/ft) Concrete buildup (for each girder, LG2)

SIPforms 20 ... (lbf/ft2) Stay-in-place formwork pressure load (LG2)

OverhangForms 10 ... (lbf/ft2) Overhang formwork pressure load (LG2)

OHbracketSelfWt 167 ... (lbf) Overhang bracket self-weight of a single bracket (LG2)
(Note: based on material and overhang bracket dimensions)
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Equivalent Load Group 2 loads

VSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

To predict VEXT LG2

Convert 3D loads
to equivalent one
dimensional loads

VEXT LG2

Span length

Load Group 2 loads

VEXT LG2

 Quantify VSTATIC LG2  using a static analysis with the deck fully placed...

DeckLength L 180 ... (ft) Length of fully placed deck

 Collapse construction LG2 loads to equivalent one-dimensional loads ...

EquivConcrete WetConcrete DeckWidth 1000 4.675 ... (kip/ft) Converted pressure load (psf) to equivalent line load

EquivBuildup ConcreteBuildup N 1000 0.25 ... (kip/ft) Concrete buildup for all girders to equivalent line load

EquivSIPforms SIPforms FormWidth 1000 0.4 ... (kip/ft) Converted pressure load (psf) to equivalent line load

EquivOverhangForms OverhangForms 2 OH
48

2

1

12


2.5

12


24

12












 1000 0.084

... (kip/ft) Converted pressure load (psf) to equivalent line load for
overhang formwork (based on deck overhang width)

... Total number of overhang brackets 
(assumed at 5 ft spacing and at each end)NumBrackets 2

L

5
1





 74

EquivOHbrackets
NumBrackets OHbracketSelfWt 1000

L
0.069

... (kip/ft) Total bracket weight converted to equivalent line load

 Quantify reactions ...

RxnA EquivConcrete EquivBuildup EquivSIPforms EquivOverhangForms EquivOHbrackets( ) L 2 493

... (kips) Reaction at End A

 Define ... VSTATIC LG2

VSTATIC LG2 RxnA 493 ... (kips) Maximum reaction using a static analysis

 Quantify the exterior girder end shear force distribution factor ...

Select a desired exceedance level: β 0.12 to achieve a 95% exceedance level

DFV EXT LG2 1 β( ) 0.01 0.78 N( )
0.93

0.91 L( )
0.06

 0.81
OH

S






0.36










 0.286

... LG2 exterior girder end shear force distribution factor

 Compute the exterior girder end shear force prediction ...

VEXT LG2 VSTATIC LG2 DFV EXT LG2 140.9 ... (kips) LG2 exterior girder end shear force prediction
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Equivalent Load Group 2 loads

VSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

To predict VINT LG2

Convert 3D loads
to equivalent one
dimensional loads

VINT LG2

Span length

Load Group 2 loads

 Quantify VSTATIC LG2  using a static analysis with the finishing machine load located at one end...

As shown above, VSTATIC LG2 RxnA 493 ... (kips) Maximum reaction using a static analysis

 Quantify the interior girder end shear force distribution factor ...

Select a desired exceedance level: β 0.17 to achieve a 95% exceedance level

DFV INT LG2 1 β( ) 0.03 0.89 N( )
1.08

1.04 L( )
0.04

 10.16
OH

S






0.16










 0.261

... LG2 interior girder end shear force distribution factor

 Compute the interior girder end shear force prediction ...

VINT LG2 VSTATIC LG2 DFV INT LG2 128.7 ... (kips) LG2 interior girder end shear force prediction
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To predict MEXT LG2

Convert 3D loads
to equivalent one
dimensional loads

Load Group 2 loads
Equivalent Load Group 2 loads

Span length

MSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

MEXT LG2

MEXT LG2

 Quantify MSTATIC LG2  using a static analysis with the deck fully placed...

DeckLength L 180 ... (ft) Length of fully placed deck

 Collapse construction LG2 loads to equivalent one-dimensional loads ...

EquivConcrete WetConcrete DeckWidth 1000 4.675 ... (kip/ft) Converted pressure load (psf) to equivalent line load

EquivBuildup ConcreteBuildup N 1000 0.25 ... (kip/ft) Concrete buildup for all girders to equivalent line load

EquivSIPforms SIPforms FormWidth 1000 0.4 ... (kip/ft) Converted pressure load (psf) to equivalent line load

EquivOverhangForms OverhangForms 2 OH 12
48

2
 2.5 24






1

12






 1000 0.084

... (kip/ft) Converted pressure load (psf) to equivalent line load for
overhang formwork (based on deck overhang width)

... Total number of overhang brackets 
(assumed at 5 ft spacing and at each end)NumBrackets 2

L

5
1





 74

EquivOHbrackets
NumBrackets OHbracketSelfWt 1000

L
0.069

... (kip/ft) Total bracket weight converted to equivalent line load

 Quantify reactions ...

RxnA EquivConcrete EquivBuildup EquivSIPforms EquivOverhangForms EquivOHbrackets( ) L 2 493

... (kips) Reaction at End A

 Define ... MSTATIC LG2

w EquivConcrete EquivBuildup EquivSIPforms EquivOverhangForms EquivOHbrackets 5.478

... (kip/ft) Total equivalent LG2 line load 

MSTATIC LG2 w( ) L
2

 8 22185 ... (kip-ft) Maximum moment using a static analysis
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 Quantify the exterior girder maximum moment distribution factor ...

Select a desired exceedance level: β 0.15 to achieve a 95% exceedance level

DFM EXT LG2 1 β( ) 0.06 1.66 N( )
0.77

2.29 L( )
0.01

 24.58
OH

S






0.17










 0.250

... LG2 exterior girder maximum moment distribution factor

 Compute the exterior girder maximum moment prediction ...

MEXT LG2 MSTATIC LG2 DFM EXT LG2 5540 ... (kip-ft) LG2 exterior girder maximum moment prediction

To predict MINT LG2

Convert 3D loads
to equivalent one
dimensional loads

Load Group 2 loads

MINT LG2

Equivalent Load Group 2 loads

Span length

MSTATIC LG2

Note: Equivalent Load Group 2 loads include overhang bracket self-weight

 Quantify MSTATIC LG2  using a static analysis with the deck fully placed...

As shown above, MSTATIC LG2 22185 ... (kip-ft) Maximum moment using a static analysis

 Quantify the interior girder maximum moment distribution factor ...

Select a desired exceedance level: β 0.11 to achieve a 95% exceedance level

DFM INT LG2 1 β( ) 0.01 0.72 N( )
1.09

18.19 L( )
0.01

 14.01
OH

S






0.16










 0.233

... LG2 interior girder maximum moment distribution factor

 Compute the interior girder maximum moment prediction ...

MINT LG2 MSTATIC LG2 DFM INT LG2 5179 ... (kip-ft) LG2 interior girder maximum moment prediction
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APPENDIX F 

DETAILED ILLUSTRATIONS: 
DISTRIBUTION FACTORS FOR CASES WITH INTERIOR BRACING 

 
Presented in this appendix is an illustration of why the number of braces—which may 

influence the distribution of load between interior and exterior girders—was omitted from the 
final DF equation [i.e., Eqn. (7.17)] as a parameter. For Load Group 1, finishing machine and 
worker line loads are applied to the lateral extremities of the bridge by means of the overhang 
brackets. The Load Group 1 loads applied (indirectly) to the exterior girders are noticeably 
different from the uniform live load that is applied (indirectly) to the interior girders. Due to the 
eccentric nature of the finishing machine and worker line loads, the presence of additional 
interior bracing can influence the amount of load that is distributed from exterior to interior 
girders. That is, adding additional interior braces increases the transfer (distribution) of the 
lateral-extremity loads to interior girders. The loading condition where the number of braces is 
typically most influential occurs when the finishing machine load is applied at the midspan. In 
this condition, the finishing machine is at the furthest possible distance from the end-span 
bracing, thus reducing the influence of the end-span braces and increasing the influence of 
interior braces. To illustrate the influence of interior bracing on distribution factors, the 
calculation of maximum exterior girder moments for Load Group 1 (see Figure F.1) is given 
focus in this appendix. 

MEXT LG1

20 f
t

Machine load

Live load tributary area

Worker line load

MEXT LG1

50 f
t

 

Figure F.1 Load Group 1 loads with the finishing machine located at the midspan to produce 
maximum girder moments 

In the distribution factor parametric study carried out in this project, the number of brace 
points ranged from two (2) (i.e., only end-span bracing) to five (5) (i.e., quarter-point bracing). 
For each choice of ‘number of braces’, three (3) different bracing ‘material-configuration’ 
combinations were considered: 

 Timber X-bracing 
 Steel X-bracing 
 Steel K-bracing 

As a result, for a single bridge configuration (i.e., a system defined by single parameter values 
for span length, girder depth, skew angle, overhang width, girder spacing, and number of 
girders), twelve (12) possible bracing arrangements were considered in the distribution factor 
parametric study (see Figure F.2). 
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Only end-span bracing Midspan interior bracing Third-point interior bracing Quarter-point interior bracing  

(a) 

Only end-span bracing Midspan interior bracing Third-point interior bracing Quarter-point interior bracing  

(b) 

Only end-span bracing Midspan interior bracing Third-point interior bracing Quarter-point interior bracing  

(c) 

Figure F.2 Brace configurations considered in the parametric study for 5-girder bridge systems 
with: (a) Timber X-bracing; (b) Steel X-bracing; (c) Steel K-bracing 

To illustrate how load distribution within a bridge system varies as the number of braces 
is increased, the following baseline bridge configuration was selected:  

 Five (5) 78” FIBs 
 180-ft span lengths 
 6-ft girder spacings 
 25-in. deck overhang widths 
 0-deg. skew angle 
 Load Group 1 loads applied with the finishing located at the midspan 

With these parameter choices fixed, four (4) different bracing conditions were selected for 
depiction: 

 With only end-span bracing 
 With timber end-span and midspan X-bracing 
 With steel end-span and midspan X-bracing 
 With steel end-span and midspan K-bracing 

These cases are shown in Figures F.3-F.6 and the corresponding bridge system responses for 
each case—depicted as the midspan deflection for the girder system cross-section—are shown in 
Figures F.7-F.10. Midspan deflections for the end-span bracing case were found to be essentially 
the same for all three of the bracing material-configuration combinations, and as a result, the 
material (steel or timber) and bracing configuration (X- or K-brace) was not included in the 
description. 
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Theoretically, loads applied to a bridge girder system will be more evenly distributed 
among exterior and interior girders as interior bracing points are introduced. For the end-span-
only bracing case, bracing stiffness provided to the girder system is not sufficient to distribute 
loads—which are located at the midspan and the lateral extremities—to interior girders. 
Therefore, loads at the extremities are carried solely by the exterior girders, and midspan 
deflections of the exterior girders are larger, relative to the interior girders (Figure F.7). With the 
addition of an interior midspan bracing point, exterior and interior girders are integrated together 
as a system. However, as shown in Figures F.8-F.10, significant load sharing only occurs when 
there is sufficient brace stiffness. That is, addition of a timber X-brace—the lowest stiffness 
brace type considered in the parametric study—at midspan provides a minimal change in load 
distribution and reduction of displacement for the exterior girders. In contrast, addition of a steel 
K-brace—the highest stiffness brace type considered in the parametric study—at midspan 
effectively redistributes loads at the extremities to interior girders, reducing the difference in 
displacement between exterior and interior girders (as shown in Figure F.10). In Figure F.11, 
responses are shown for all twelve (12) of the bracing arrangements considered in this study. 

As noted in Chapter 7, a culled dataset was used in development of the recommended 
distribution factor equations. However, it is beneficial to illustrate the level of conservatism 
present in the empirical prediction of exterior girder maximum moment over the full data set as 
well. In Figure F.12, normalized errors of exterior girder moment (computed using the proposed 
DFM EXT LG1 equation with: 95% exceedance; Table 7.3; β=0.08) are shown for the full data set, 
that is—all structural configurations; finishing machine at midspan; 36,288 cases. These data 
were then separated into groups corresponding to the three different bracing material-
configuration combinations considered (i.e., steel K-bracing, steel X-bracing, and timber X-
bracing (12,096 cases each). These data were further separated into sub-groups consisting of: 
i) cases with interior bracing at typical span lengths, and ii) cases with end-span bracing only, or 
with shorter-than-typical span lengths. At ‘shorter-than-typical’ span lengths (i.e., span lengths 
less than 90 ft), the uniform live load in Load Group 1 acts over nearly the entire span length 
(Figure F.13) resulting in a response that differs from that which occurs at more typical span 
lengths (see Figure F.14).  

For the typical bridge configuration selected for illustration, and superimposed Load 
Group 1 (with finishing machine located at midspan), the distribution of maximum moment 
among exterior and interior girders is shown in Figures F.15-F.17. Normalized prediction errors 
in exterior girder moment, computed using the proposed DFM EXT LG1 equation (95% exceedance; 
Table 7.3; β=0.08), are further separated into three groups based on brace stiffness. As illustrated 
in Figures F.15-F.17, a moderate increase in prediction-conservatism is observed for cases with 
interior bracing, but only for the steel bracing cases. Additionally, the degree of prediction-
conservatism is smaller for steel X-bracing than steel K-bracing, due to the lower stiffness of 
steel X-braces as compared to steel K-braces. Overall, differences in the conservatism of 
moment prediction for timber X-braced bridges versus steel K-braced bridges was not sufficient 
(~10%-20%) to warrant introducing additional terms (number of braces, brace stiffness) into the 
recommended distribution factor equations.   
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G1 G2 G3 G4 G5  

(a) 

 

 

G1 G2 G3 G4 G5

(b) 

Figure F.3 Bridge cross-section with only end-span bracing: (a) Isometric view;  
(b) Cross-section at the midspan 

G1 G2 G3 G4 G5  

(a) 

 

 

G1 G2 G3 G4 G5

(b) 

Figure F.4 Bridge cross-section with interior midspan timber X-bracing: (a) Isometric view; 
(b) Cross-section at the midspan 

G1 G2 G3 G4 G5  

(a) 

 

 

G1 G2 G3 G4 G5

(b) 

Figure F.5 Bridge cross-section with interior midspan steel X-bracing: (a) Isometric view; 
(b) Cross-section at the midspan 

G1 G2 G3 G4 G5  

(a) 

 

 

G1 G2 G3 G4 G5

(b) 

Figure F.6 Bridge cross-section with interior midspan steel K-bracing: (a) Isometric view; 
(b) Cross-section at the midspan 
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G1

G2 G3 G4

G5

Deflected bridge cross-section
(vertical deflections exaggerated)

ΔINTERIOR

ΔEXTERIOR

Undeflected bridge cross-section

 

Figure F.7 Bridge cross-section midspan deflection without interior bracing 

G1

G2
G3

G4

G5  

Figure F.8 Bridge cross-section midspan deflection with interior timber X-bracing 

G1

G2
G3

G4

G5  

Figure F.9 Bridge cross-section midspan deflection with interior steel X-bracing 

G1
G2

G3
G4

G5  

Figure F.10 Bridge cross-section midspan deflection with interior steel K-bracing 
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(2 bracing points)
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G2
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G4

G5

(>2 timber X-bracing points)

  

(a) (b) 

G1

G2 G3 G4

G5
(2 bracing points)

 

G1

G2
G3

G4

G5(>2 steel X-bracing points)   

(c) (d) 

G1

G2 G3 G4

G5
(2 bracing points)

 

G1
G2 G3 G4

G5
(>2 steel K-bracing points)   

(e) (f) 

Figure F.11 5-girder, FIB78, 180-ft span, 6-ft girder spacing, 25-in. deck overhang, 0-deg. skew 
bridge configuration: (a) deformed shapes for timber X-bracing; (b) midspan displacement 

quantities for timber X-bracing; (c) deformed shapes for steel X-bracing; (d) midspan 
displacement quantities for steel X-bracing; (e) deformed shapes for steel K-bracing;  

(f) midspan displacement quantities for steel K-bracing 
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Figure F.12 Moment (MEXT LG1) prediction error for all bridge configurations (36,288 cases) 
using DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% exceedance 

Note: bridge configurations include different brace materials and configurations  
(i.e., steel K-bracing, steel X-bracing, and timber X-bracing are separate bridge configurations) 
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(a) (b) 

Figure F.13 Load Group 1 loads applied at the midspan for a ‘shorter-than-typical’ span length: 
(a) Isometric view; (b) Elevation view 

3 kips
3.5 kips

3.5 kips32.6 kips

3 kips

50
 ft

 (t
yp

.)

L = 18
0 f

t

 L = 180 ft
50 ft

 

(a) (b) 

Figure F.14 Load Group 1 loads applied at the midspan for a typical span length:  
(a) Isometric view; (b) Elevation view 
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(a) 

 
(b) 

Figure F.15 Timber X-bracing cases: (a) Moment for each girder at the midspan for the typical 
bridge configuration; (b) Moment (MEXT LG1) prediciton for the timber X-brace data set using 

DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% exceedance 

 
(a) 

 
(b) 

Figure F.16 Steel X-bracing cases: (a) Moment for each girder at the midspan for the typical 
bridge configuration; (b) Moment (MEXT LG1) prediciton for the steel X-brace data set using 
DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% exceedance 

 
(a) 

 
(b) 

Figure F.17 Steel K-bracing cases: (a) Moment for each girder at the midspan for the typical 
bridge configuration; (b) Moment (MEXT LG1) prediciton for the steel K-brace data set using  
DFM EXT LG1 in conjunction with a static beam analysis, shifted with β to a 95% exceedance 
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